Solve for x, y
x = \frac{5000}{57} = 87\frac{41}{57} \approx 87.719298246
y = \frac{3500}{19} = 184\frac{4}{19} \approx 184.210526316
Graph
Share
Copied to clipboard
1.5x+2y=500,30x+2y=3000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
1.5x+2y=500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
1.5x=-2y+500
Subtract 2y from both sides of the equation.
x=\frac{2}{3}\left(-2y+500\right)
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{3}y+\frac{1000}{3}
Multiply \frac{2}{3} times -2y+500.
30\left(-\frac{4}{3}y+\frac{1000}{3}\right)+2y=3000
Substitute \frac{-4y+1000}{3} for x in the other equation, 30x+2y=3000.
-40y+10000+2y=3000
Multiply 30 times \frac{-4y+1000}{3}.
-38y+10000=3000
Add -40y to 2y.
-38y=-7000
Subtract 10000 from both sides of the equation.
y=\frac{3500}{19}
Divide both sides by -38.
x=-\frac{4}{3}\times \frac{3500}{19}+\frac{1000}{3}
Substitute \frac{3500}{19} for y in x=-\frac{4}{3}y+\frac{1000}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{14000}{57}+\frac{1000}{3}
Multiply -\frac{4}{3} times \frac{3500}{19} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{5000}{57}
Add \frac{1000}{3} to -\frac{14000}{57} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{5000}{57},y=\frac{3500}{19}
The system is now solved.
1.5x+2y=500,30x+2y=3000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1.5&2\\30&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\3000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1.5&2\\30&2\end{matrix}\right))\left(\begin{matrix}1.5&2\\30&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&2\\30&2\end{matrix}\right))\left(\begin{matrix}500\\3000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1.5&2\\30&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&2\\30&2\end{matrix}\right))\left(\begin{matrix}500\\3000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&2\\30&2\end{matrix}\right))\left(\begin{matrix}500\\3000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{1.5\times 2-2\times 30}&-\frac{2}{1.5\times 2-2\times 30}\\-\frac{30}{1.5\times 2-2\times 30}&\frac{1.5}{1.5\times 2-2\times 30}\end{matrix}\right)\left(\begin{matrix}500\\3000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{57}&\frac{2}{57}\\\frac{10}{19}&-\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}500\\3000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{57}\times 500+\frac{2}{57}\times 3000\\\frac{10}{19}\times 500-\frac{1}{38}\times 3000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5000}{57}\\\frac{3500}{19}\end{matrix}\right)
Do the arithmetic.
x=\frac{5000}{57},y=\frac{3500}{19}
Extract the matrix elements x and y.
1.5x+2y=500,30x+2y=3000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1.5x-30x+2y-2y=500-3000
Subtract 30x+2y=3000 from 1.5x+2y=500 by subtracting like terms on each side of the equal sign.
1.5x-30x=500-3000
Add 2y to -2y. Terms 2y and -2y cancel out, leaving an equation with only one variable that can be solved.
-28.5x=500-3000
Add \frac{3x}{2} to -30x.
-28.5x=-2500
Add 500 to -3000.
x=\frac{5000}{57}
Divide both sides of the equation by -28.5, which is the same as multiplying both sides by the reciprocal of the fraction.
30\times \frac{5000}{57}+2y=3000
Substitute \frac{5000}{57} for x in 30x+2y=3000. Because the resulting equation contains only one variable, you can solve for y directly.
\frac{50000}{19}+2y=3000
Multiply 30 times \frac{5000}{57}.
2y=\frac{7000}{19}
Subtract \frac{50000}{19} from both sides of the equation.
y=\frac{3500}{19}
Divide both sides by 2.
x=\frac{5000}{57},y=\frac{3500}{19}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}