Solve for a, n
a = \frac{32}{3} = 10\frac{2}{3} \approx 10.666666667
n=5.85
Share
Copied to clipboard
0.3a+13+0.5=16.7-0
Consider the first equation. Combine 1.2a and -0.9a to get 0.3a.
0.3a+13.5=16.7-0
Add 13 and 0.5 to get 13.5.
0.3a+13.5=16.7
Subtract 0 from 16.7 to get 16.7.
0.3a=16.7-13.5
Subtract 13.5 from both sides.
0.3a=3.2
Subtract 13.5 from 16.7 to get 3.2.
a=\frac{3.2}{0.3}
Divide both sides by 0.3.
a=\frac{32}{3}
Expand \frac{3.2}{0.3} by multiplying both numerator and the denominator by 10.
28-1.6n=3.2n-0.08
Consider the second equation. Multiply 7 and 4 to get 28.
28-1.6n-3.2n=-0.08
Subtract 3.2n from both sides.
28-4.8n=-0.08
Combine -1.6n and -3.2n to get -4.8n.
-4.8n=-0.08-28
Subtract 28 from both sides.
-4.8n=-28.08
Subtract 28 from -0.08 to get -28.08.
n=\frac{-28.08}{-4.8}
Divide both sides by -4.8.
n=\frac{-2808}{-480}
Expand \frac{-28.08}{-4.8} by multiplying both numerator and the denominator by 100.
n=\frac{117}{20}
Reduce the fraction \frac{-2808}{-480} to lowest terms by extracting and canceling out -24.
a=\frac{32}{3} n=\frac{117}{20}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}