Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+6y=372,4x+12y=780
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+6y=372
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-6y+372
Subtract 6y from both sides of the equation.
4\left(-6y+372\right)+12y=780
Substitute -6y+372 for x in the other equation, 4x+12y=780.
-24y+1488+12y=780
Multiply 4 times -6y+372.
-12y+1488=780
Add -24y to 12y.
-12y=-708
Subtract 1488 from both sides of the equation.
y=59
Divide both sides by -12.
x=-6\times 59+372
Substitute 59 for y in x=-6y+372. Because the resulting equation contains only one variable, you can solve for x directly.
x=-354+372
Multiply -6 times 59.
x=18
Add 372 to -354.
x=18,y=59
The system is now solved.
x+6y=372,4x+12y=780
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&6\\4&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}372\\780\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&6\\4&12\end{matrix}\right))\left(\begin{matrix}1&6\\4&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\4&12\end{matrix}\right))\left(\begin{matrix}372\\780\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&6\\4&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\4&12\end{matrix}\right))\left(\begin{matrix}372\\780\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\4&12\end{matrix}\right))\left(\begin{matrix}372\\780\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{12-6\times 4}&-\frac{6}{12-6\times 4}\\-\frac{4}{12-6\times 4}&\frac{1}{12-6\times 4}\end{matrix}\right)\left(\begin{matrix}372\\780\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\\frac{1}{3}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}372\\780\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-372+\frac{1}{2}\times 780\\\frac{1}{3}\times 372-\frac{1}{12}\times 780\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\59\end{matrix}\right)
Do the arithmetic.
x=18,y=59
Extract the matrix elements x and y.
x+6y=372,4x+12y=780
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4\times 6y=4\times 372,4x+12y=780
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+24y=1488,4x+12y=780
Simplify.
4x-4x+24y-12y=1488-780
Subtract 4x+12y=780 from 4x+24y=1488 by subtracting like terms on each side of the equal sign.
24y-12y=1488-780
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
12y=1488-780
Add 24y to -12y.
12y=708
Add 1488 to -780.
y=59
Divide both sides by 12.
4x+12\times 59=780
Substitute 59 for y in 4x+12y=780. Because the resulting equation contains only one variable, you can solve for x directly.
4x+708=780
Multiply 12 times 59.
4x=72
Subtract 708 from both sides of the equation.
x=18
Divide both sides by 4.
x=18,y=59
The system is now solved.