Solve for x, y
x = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
y = -\frac{32}{3} = -10\frac{2}{3} \approx -10.666666667
Graph
Share
Copied to clipboard
-14y-147+2y=-19
Consider the second equation. Use the distributive property to multiply 7 by -2y-21.
-12y-147=-19
Combine -14y and 2y to get -12y.
-12y=-19+147
Add 147 to both sides.
-12y=128
Add -19 and 147 to get 128.
y=\frac{128}{-12}
Divide both sides by -12.
y=-\frac{32}{3}
Reduce the fraction \frac{128}{-12} to lowest terms by extracting and canceling out 4.
1x+2\left(-\frac{32}{3}\right)=-14
Consider the first equation. Insert the known values of variables into the equation.
1x-\frac{64}{3}=-14
Multiply 2 and -\frac{32}{3} to get -\frac{64}{3}.
1x=-14+\frac{64}{3}
Add \frac{64}{3} to both sides.
1x=\frac{22}{3}
Add -14 and \frac{64}{3} to get \frac{22}{3}.
x=\frac{\frac{22}{3}}{1}
Divide both sides by 1.
x=\frac{22}{3\times 1}
Express \frac{\frac{22}{3}}{1} as a single fraction.
x=\frac{22}{3}
Multiply 3 and 1 to get 3.
x=\frac{22}{3} y=-\frac{32}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}