Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=5000,0.05x+0.15y=540
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=5000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+5000
Subtract y from both sides of the equation.
0.05\left(-y+5000\right)+0.15y=540
Substitute -y+5000 for x in the other equation, 0.05x+0.15y=540.
-0.05y+250+0.15y=540
Multiply 0.05 times -y+5000.
0.1y+250=540
Add -\frac{y}{20} to \frac{3y}{20}.
0.1y=290
Subtract 250 from both sides of the equation.
y=2900
Multiply both sides by 10.
x=-2900+5000
Substitute 2900 for y in x=-y+5000. Because the resulting equation contains only one variable, you can solve for x directly.
x=2100
Add 5000 to -2900.
x=2100,y=2900
The system is now solved.
x+y=5000,0.05x+0.15y=540
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.05&0.15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5000\\540\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.05&0.15\end{matrix}\right))\left(\begin{matrix}1&1\\0.05&0.15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.05&0.15\end{matrix}\right))\left(\begin{matrix}5000\\540\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.05&0.15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.05&0.15\end{matrix}\right))\left(\begin{matrix}5000\\540\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.05&0.15\end{matrix}\right))\left(\begin{matrix}5000\\540\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.15}{0.15-0.05}&-\frac{1}{0.15-0.05}\\-\frac{0.05}{0.15-0.05}&\frac{1}{0.15-0.05}\end{matrix}\right)\left(\begin{matrix}5000\\540\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1.5&-10\\-0.5&10\end{matrix}\right)\left(\begin{matrix}5000\\540\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1.5\times 5000-10\times 540\\-0.5\times 5000+10\times 540\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2100\\2900\end{matrix}\right)
Do the arithmetic.
x=2100,y=2900
Extract the matrix elements x and y.
x+y=5000,0.05x+0.15y=540
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.05x+0.05y=0.05\times 5000,0.05x+0.15y=540
To make x and \frac{x}{20} equal, multiply all terms on each side of the first equation by 0.05 and all terms on each side of the second by 1.
0.05x+0.05y=250,0.05x+0.15y=540
Simplify.
0.05x-0.05x+0.05y-0.15y=250-540
Subtract 0.05x+0.15y=540 from 0.05x+0.05y=250 by subtracting like terms on each side of the equal sign.
0.05y-0.15y=250-540
Add \frac{x}{20} to -\frac{x}{20}. Terms \frac{x}{20} and -\frac{x}{20} cancel out, leaving an equation with only one variable that can be solved.
-0.1y=250-540
Add \frac{y}{20} to -\frac{3y}{20}.
-0.1y=-290
Add 250 to -540.
y=2900
Multiply both sides by -10.
0.05x+0.15\times 2900=540
Substitute 2900 for y in 0.05x+0.15y=540. Because the resulting equation contains only one variable, you can solve for x directly.
0.05x+435=540
Multiply 0.15 times 2900.
0.05x=105
Subtract 435 from both sides of the equation.
x=2100
Multiply both sides by 20.
x=2100,y=2900
The system is now solved.