Solve for c, V
c=9000
V=7500
Share
Copied to clipboard
c+V=16500,2c+3V=40500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
c+V=16500
Choose one of the equations and solve it for c by isolating c on the left hand side of the equal sign.
c=-V+16500
Subtract V from both sides of the equation.
2\left(-V+16500\right)+3V=40500
Substitute -V+16500 for c in the other equation, 2c+3V=40500.
-2V+33000+3V=40500
Multiply 2 times -V+16500.
V+33000=40500
Add -2V to 3V.
V=7500
Subtract 33000 from both sides of the equation.
c=-7500+16500
Substitute 7500 for V in c=-V+16500. Because the resulting equation contains only one variable, you can solve for c directly.
c=9000
Add 16500 to -7500.
c=9000,V=7500
The system is now solved.
c+V=16500,2c+3V=40500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}16500\\40500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}c\\V\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}16500\\40500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\V\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}16500\\40500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}c\\V\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}16500\\40500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}16500\\40500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}16500\\40500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}3\times 16500-40500\\-2\times 16500+40500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}9000\\7500\end{matrix}\right)
Do the arithmetic.
c=9000,V=7500
Extract the matrix elements c and V.
c+V=16500,2c+3V=40500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2c+2V=2\times 16500,2c+3V=40500
To make c and 2c equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2c+2V=33000,2c+3V=40500
Simplify.
2c-2c+2V-3V=33000-40500
Subtract 2c+3V=40500 from 2c+2V=33000 by subtracting like terms on each side of the equal sign.
2V-3V=33000-40500
Add 2c to -2c. Terms 2c and -2c cancel out, leaving an equation with only one variable that can be solved.
-V=33000-40500
Add 2V to -3V.
-V=-7500
Add 33000 to -40500.
V=7500
Divide both sides by -1.
2c+3\times 7500=40500
Substitute 7500 for V in 2c+3V=40500. Because the resulting equation contains only one variable, you can solve for c directly.
2c+22500=40500
Multiply 3 times 7500.
2c=18000
Subtract 22500 from both sides of the equation.
c=9000
Divide both sides by 2.
c=9000,V=7500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}