Evaluate
\frac{2148271}{720720}\approx 2.980728993
Factor
\frac{103 \cdot 20857}{2 ^ {4} \cdot 3 ^ {2} \cdot 5 \cdot 7 \cdot 11 \cdot 13} = 2\frac{706831}{720720} = 2.9807289932289933
Share
Copied to clipboard
\frac{2}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 2 and 1 to get 3.
\frac{9}{6}+\frac{2}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{9+2}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{9}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{11}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 9 and 2 to get 11.
\frac{22}{12}+\frac{3}{12}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{22+3}{12}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{22}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{25}{12}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 22 and 3 to get 25.
\frac{125}{60}-\frac{12}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 12 and 5 is 60. Convert \frac{25}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{125-12}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{125}{60} and \frac{12}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{113}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Subtract 12 from 125 to get 113.
\frac{113}{60}+\frac{10}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 60 and 6 is 60. Convert \frac{113}{60} and \frac{1}{6} to fractions with denominator 60.
\frac{113+10}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{113}{60} and \frac{10}{60} have the same denominator, add them by adding their numerators.
\frac{123}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 113 and 10 to get 123.
\frac{41}{20}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Reduce the fraction \frac{123}{60} to lowest terms by extracting and canceling out 3.
\frac{287}{140}+\frac{20}{140}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 20 and 7 is 140. Convert \frac{41}{20} and \frac{1}{7} to fractions with denominator 140.
\frac{287+20}{140}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{287}{140} and \frac{20}{140} have the same denominator, add them by adding their numerators.
\frac{307}{140}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 287 and 20 to get 307.
\frac{614}{280}+\frac{35}{280}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 140 and 8 is 280. Convert \frac{307}{140} and \frac{1}{8} to fractions with denominator 280.
\frac{614+35}{280}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{614}{280} and \frac{35}{280} have the same denominator, add them by adding their numerators.
\frac{649}{280}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 614 and 35 to get 649.
\frac{5841}{2520}+\frac{280}{2520}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 280 and 9 is 2520. Convert \frac{649}{280} and \frac{1}{9} to fractions with denominator 2520.
\frac{5841+280}{2520}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{5841}{2520} and \frac{280}{2520} have the same denominator, add them by adding their numerators.
\frac{6121}{2520}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 5841 and 280 to get 6121.
\frac{6121}{2520}+\frac{252}{2520}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 2520 and 10 is 2520. Convert \frac{6121}{2520} and \frac{1}{10} to fractions with denominator 2520.
\frac{6121+252}{2520}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{6121}{2520} and \frac{252}{2520} have the same denominator, add them by adding their numerators.
\frac{6373}{2520}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 6121 and 252 to get 6373.
\frac{70103}{27720}+\frac{2520}{27720}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 2520 and 11 is 27720. Convert \frac{6373}{2520} and \frac{1}{11} to fractions with denominator 27720.
\frac{70103+2520}{27720}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{70103}{27720} and \frac{2520}{27720} have the same denominator, add them by adding their numerators.
\frac{72623}{27720}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 70103 and 2520 to get 72623.
\frac{72623}{27720}+\frac{2310}{27720}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 27720 and 12 is 27720. Convert \frac{72623}{27720} and \frac{1}{12} to fractions with denominator 27720.
\frac{72623+2310}{27720}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{72623}{27720} and \frac{2310}{27720} have the same denominator, add them by adding their numerators.
\frac{74933}{27720}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 72623 and 2310 to get 74933.
\frac{974129}{360360}+\frac{27720}{360360}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 27720 and 13 is 360360. Convert \frac{74933}{27720} and \frac{1}{13} to fractions with denominator 360360.
\frac{974129+27720}{360360}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Since \frac{974129}{360360} and \frac{27720}{360360} have the same denominator, add them by adding their numerators.
\frac{1001849}{360360}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Add 974129 and 27720 to get 1001849.
\frac{1001849}{360360}+\frac{25740}{360360}+\frac{1}{15}+\frac{1}{16}
Least common multiple of 360360 and 14 is 360360. Convert \frac{1001849}{360360} and \frac{1}{14} to fractions with denominator 360360.
\frac{1001849+25740}{360360}+\frac{1}{15}+\frac{1}{16}
Since \frac{1001849}{360360} and \frac{25740}{360360} have the same denominator, add them by adding their numerators.
\frac{1027589}{360360}+\frac{1}{15}+\frac{1}{16}
Add 1001849 and 25740 to get 1027589.
\frac{1027589}{360360}+\frac{24024}{360360}+\frac{1}{16}
Least common multiple of 360360 and 15 is 360360. Convert \frac{1027589}{360360} and \frac{1}{15} to fractions with denominator 360360.
\frac{1027589+24024}{360360}+\frac{1}{16}
Since \frac{1027589}{360360} and \frac{24024}{360360} have the same denominator, add them by adding their numerators.
\frac{1051613}{360360}+\frac{1}{16}
Add 1027589 and 24024 to get 1051613.
\frac{2103226}{720720}+\frac{45045}{720720}
Least common multiple of 360360 and 16 is 720720. Convert \frac{1051613}{360360} and \frac{1}{16} to fractions with denominator 720720.
\frac{2103226+45045}{720720}
Since \frac{2103226}{720720} and \frac{45045}{720720} have the same denominator, add them by adding their numerators.
\frac{2148271}{720720}
Add 2103226 and 45045 to get 2148271.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}