Solve for x, y
x = -\frac{196}{5} = -39\frac{1}{5} = -39.2
y = \frac{29}{5} = 5\frac{4}{5} = 5.8
Graph
Share
Copied to clipboard
0x+5y=29
Consider the first equation. Multiply 0 and 3 to get 0.
0+5y=29
Anything times zero gives zero.
5y=29
Anything plus zero gives itself.
y=\frac{29}{5}
Divide both sides by 5.
-x-4\times \frac{29}{5}=16
Consider the second equation. Insert the known values of variables into the equation.
-x-\frac{116}{5}=16
Multiply -4 and \frac{29}{5} to get -\frac{116}{5}.
-x=16+\frac{116}{5}
Add \frac{116}{5} to both sides.
-x=\frac{196}{5}
Add 16 and \frac{116}{5} to get \frac{196}{5}.
x=\frac{\frac{196}{5}}{-1}
Divide both sides by -1.
x=\frac{196}{5\left(-1\right)}
Express \frac{\frac{196}{5}}{-1} as a single fraction.
x=\frac{196}{-5}
Multiply 5 and -1 to get -5.
x=-\frac{196}{5}
Fraction \frac{196}{-5} can be rewritten as -\frac{196}{5} by extracting the negative sign.
x=-\frac{196}{5} y=\frac{29}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}