Solve for x_1, x_2, x_3
x_{1} = \frac{266}{193} = 1\frac{73}{193} \approx 1.378238342
x_{2} = \frac{209}{193} = 1\frac{16}{193} \approx 1.082901554
x_{3} = -\frac{282}{193} = -1\frac{89}{193} \approx -1.461139896
Share
Copied to clipboard
x_{1}+x_{2}+x_{3}=1 0.15x_{1}+0.8x_{2}+0.05x_{3}=1 0.7x_{1}+0.1x_{2}+0.05x_{3}=1
Reorder the equations.
x_{1}=-x_{2}-x_{3}+1
Solve x_{1}+x_{2}+x_{3}=1 for x_{1}.
0.15\left(-x_{2}-x_{3}+1\right)+0.8x_{2}+0.05x_{3}=1 0.7\left(-x_{2}-x_{3}+1\right)+0.1x_{2}+0.05x_{3}=1
Substitute -x_{2}-x_{3}+1 for x_{1} in the second and third equation.
x_{2}=\frac{2}{13}x_{3}+\frac{17}{13} x_{3}=-\frac{12}{13}x_{2}-\frac{6}{13}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-\frac{12}{13}\left(\frac{2}{13}x_{3}+\frac{17}{13}\right)-\frac{6}{13}
Substitute \frac{2}{13}x_{3}+\frac{17}{13} for x_{2} in the equation x_{3}=-\frac{12}{13}x_{2}-\frac{6}{13}.
x_{3}=-\frac{282}{193}
Solve x_{3}=-\frac{12}{13}\left(\frac{2}{13}x_{3}+\frac{17}{13}\right)-\frac{6}{13} for x_{3}.
x_{2}=\frac{2}{13}\left(-\frac{282}{193}\right)+\frac{17}{13}
Substitute -\frac{282}{193} for x_{3} in the equation x_{2}=\frac{2}{13}x_{3}+\frac{17}{13}.
x_{2}=\frac{209}{193}
Calculate x_{2} from x_{2}=\frac{2}{13}\left(-\frac{282}{193}\right)+\frac{17}{13}.
x_{1}=-\frac{209}{193}-\left(-\frac{282}{193}\right)+1
Substitute \frac{209}{193} for x_{2} and -\frac{282}{193} for x_{3} in the equation x_{1}=-x_{2}-x_{3}+1.
x_{1}=\frac{266}{193}
Calculate x_{1} from x_{1}=-\frac{209}{193}-\left(-\frac{282}{193}\right)+1.
x_{1}=\frac{266}{193} x_{2}=\frac{209}{193} x_{3}=-\frac{282}{193}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}