Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.5x+7y-26=0,77x+2.2y=16
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.5x+7y-26=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.5x+7y=26
Add 26 to both sides of the equation.
0.5x=-7y+26
Subtract 7y from both sides of the equation.
x=2\left(-7y+26\right)
Multiply both sides by 2.
x=-14y+52
Multiply 2 times -7y+26.
77\left(-14y+52\right)+2.2y=16
Substitute -14y+52 for x in the other equation, 77x+2.2y=16.
-1078y+4004+2.2y=16
Multiply 77 times -14y+52.
-1075.8y+4004=16
Add -1078y to \frac{11y}{5}.
-1075.8y=-3988
Subtract 4004 from both sides of the equation.
y=\frac{19940}{5379}
Divide both sides of the equation by -1075.8, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-14\times \frac{19940}{5379}+52
Substitute \frac{19940}{5379} for y in x=-14y+52. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{279160}{5379}+52
Multiply -14 times \frac{19940}{5379}.
x=\frac{548}{5379}
Add 52 to -\frac{279160}{5379}.
x=\frac{548}{5379},y=\frac{19940}{5379}
The system is now solved.
0.5x+7y-26=0,77x+2.2y=16
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.5&7\\77&2.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}26\\16\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.5&7\\77&2.2\end{matrix}\right))\left(\begin{matrix}0.5&7\\77&2.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&7\\77&2.2\end{matrix}\right))\left(\begin{matrix}26\\16\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.5&7\\77&2.2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&7\\77&2.2\end{matrix}\right))\left(\begin{matrix}26\\16\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&7\\77&2.2\end{matrix}\right))\left(\begin{matrix}26\\16\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2.2}{0.5\times 2.2-7\times 77}&-\frac{7}{0.5\times 2.2-7\times 77}\\-\frac{77}{0.5\times 2.2-7\times 77}&\frac{0.5}{0.5\times 2.2-7\times 77}\end{matrix}\right)\left(\begin{matrix}26\\16\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{489}&\frac{70}{5379}\\\frac{70}{489}&-\frac{5}{5379}\end{matrix}\right)\left(\begin{matrix}26\\16\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{489}\times 26+\frac{70}{5379}\times 16\\\frac{70}{489}\times 26-\frac{5}{5379}\times 16\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{548}{5379}\\\frac{19940}{5379}\end{matrix}\right)
Do the arithmetic.
x=\frac{548}{5379},y=\frac{19940}{5379}
Extract the matrix elements x and y.
0.5x+7y-26=0,77x+2.2y=16
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
77\times 0.5x+77\times 7y+77\left(-26\right)=0,0.5\times 77x+0.5\times 2.2y=0.5\times 16
To make \frac{x}{2} and 77x equal, multiply all terms on each side of the first equation by 77 and all terms on each side of the second by 0.5.
38.5x+539y-2002=0,38.5x+1.1y=8
Simplify.
38.5x-38.5x+539y-1.1y-2002=-8
Subtract 38.5x+1.1y=8 from 38.5x+539y-2002=0 by subtracting like terms on each side of the equal sign.
539y-1.1y-2002=-8
Add \frac{77x}{2} to -\frac{77x}{2}. Terms \frac{77x}{2} and -\frac{77x}{2} cancel out, leaving an equation with only one variable that can be solved.
537.9y-2002=-8
Add 539y to -\frac{11y}{10}.
537.9y=1994
Add 2002 to both sides of the equation.
y=\frac{19940}{5379}
Divide both sides of the equation by 537.9, which is the same as multiplying both sides by the reciprocal of the fraction.
77x+2.2\times \frac{19940}{5379}=16
Substitute \frac{19940}{5379} for y in 77x+2.2y=16. Because the resulting equation contains only one variable, you can solve for x directly.
77x+\frac{3988}{489}=16
Multiply 2.2 times \frac{19940}{5379} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
77x=\frac{3836}{489}
Subtract \frac{3988}{489} from both sides of the equation.
x=\frac{548}{5379}
Divide both sides by 77.
x=\frac{548}{5379},y=\frac{19940}{5379}
The system is now solved.