Solve for x, y
x=60
y=180
Graph
Share
Copied to clipboard
0.4x+0.6y=132,x+y=240
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.4x+0.6y=132
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.4x=-0.6y+132
Subtract \frac{3y}{5} from both sides of the equation.
x=2.5\left(-0.6y+132\right)
Divide both sides of the equation by 0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-1.5y+330
Multiply 2.5 times -\frac{3y}{5}+132.
-1.5y+330+y=240
Substitute -\frac{3y}{2}+330 for x in the other equation, x+y=240.
-0.5y+330=240
Add -\frac{3y}{2} to y.
-0.5y=-90
Subtract 330 from both sides of the equation.
y=180
Multiply both sides by -2.
x=-1.5\times 180+330
Substitute 180 for y in x=-1.5y+330. Because the resulting equation contains only one variable, you can solve for x directly.
x=-270+330
Multiply -1.5 times 180.
x=60
Add 330 to -270.
x=60,y=180
The system is now solved.
0.4x+0.6y=132,x+y=240
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.4&0.6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}132\\240\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.4&0.6\\1&1\end{matrix}\right))\left(\begin{matrix}0.4&0.6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.6\\1&1\end{matrix}\right))\left(\begin{matrix}132\\240\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.4&0.6\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.6\\1&1\end{matrix}\right))\left(\begin{matrix}132\\240\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.6\\1&1\end{matrix}\right))\left(\begin{matrix}132\\240\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{0.4-0.6}&-\frac{0.6}{0.4-0.6}\\-\frac{1}{0.4-0.6}&\frac{0.4}{0.4-0.6}\end{matrix}\right)\left(\begin{matrix}132\\240\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&3\\5&-2\end{matrix}\right)\left(\begin{matrix}132\\240\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 132+3\times 240\\5\times 132-2\times 240\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\180\end{matrix}\right)
Do the arithmetic.
x=60,y=180
Extract the matrix elements x and y.
0.4x+0.6y=132,x+y=240
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.4x+0.6y=132,0.4x+0.4y=0.4\times 240
To make \frac{2x}{5} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 0.4.
0.4x+0.6y=132,0.4x+0.4y=96
Simplify.
0.4x-0.4x+0.6y-0.4y=132-96
Subtract 0.4x+0.4y=96 from 0.4x+0.6y=132 by subtracting like terms on each side of the equal sign.
0.6y-0.4y=132-96
Add \frac{2x}{5} to -\frac{2x}{5}. Terms \frac{2x}{5} and -\frac{2x}{5} cancel out, leaving an equation with only one variable that can be solved.
0.2y=132-96
Add \frac{3y}{5} to -\frac{2y}{5}.
0.2y=36
Add 132 to -96.
y=180
Multiply both sides by 5.
x+180=240
Substitute 180 for y in x+y=240. Because the resulting equation contains only one variable, you can solve for x directly.
x=60
Subtract 180 from both sides of the equation.
x=60,y=180
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}