Solve for x, y
x = \frac{157980000}{142891} = 1105\frac{85445}{142891} \approx 1105.59797328
y = \frac{5360000}{20413} = 262\frac{11794}{20413} \approx 262.577769069
Graph
Share
Copied to clipboard
0.259x+0.966y=540,0.966x-0.259y=1000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.259x+0.966y=540
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.259x=-0.966y+540
Subtract \frac{483y}{500} from both sides of the equation.
x=\frac{1000}{259}\left(-0.966y+540\right)
Divide both sides of the equation by 0.259, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{138}{37}y+\frac{540000}{259}
Multiply \frac{1000}{259} times -\frac{483y}{500}+540.
0.966\left(-\frac{138}{37}y+\frac{540000}{259}\right)-0.259y=1000
Substitute -\frac{138y}{37}+\frac{540000}{259} for x in the other equation, 0.966x-0.259y=1000.
-\frac{33327}{9250}y+\frac{74520}{37}-0.259y=1000
Multiply 0.966 times -\frac{138y}{37}+\frac{540000}{259}.
-\frac{142891}{37000}y+\frac{74520}{37}=1000
Add -\frac{33327y}{9250} to -\frac{259y}{1000}.
-\frac{142891}{37000}y=-\frac{37520}{37}
Subtract \frac{74520}{37} from both sides of the equation.
y=\frac{5360000}{20413}
Divide both sides of the equation by -\frac{142891}{37000}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{138}{37}\times \frac{5360000}{20413}+\frac{540000}{259}
Substitute \frac{5360000}{20413} for y in x=-\frac{138}{37}y+\frac{540000}{259}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{739680000}{755281}+\frac{540000}{259}
Multiply -\frac{138}{37} times \frac{5360000}{20413} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{157980000}{142891}
Add \frac{540000}{259} to -\frac{739680000}{755281} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{157980000}{142891},y=\frac{5360000}{20413}
The system is now solved.
0.259x+0.966y=540,0.966x-0.259y=1000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.259&0.966\\0.966&-0.259\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}540\\1000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.259&0.966\\0.966&-0.259\end{matrix}\right))\left(\begin{matrix}0.259&0.966\\0.966&-0.259\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.259&0.966\\0.966&-0.259\end{matrix}\right))\left(\begin{matrix}540\\1000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.259&0.966\\0.966&-0.259\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.259&0.966\\0.966&-0.259\end{matrix}\right))\left(\begin{matrix}540\\1000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.259&0.966\\0.966&-0.259\end{matrix}\right))\left(\begin{matrix}540\\1000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.259}{0.259\left(-0.259\right)-0.966\times 0.966}&-\frac{0.966}{0.259\left(-0.259\right)-0.966\times 0.966}\\-\frac{0.966}{0.259\left(-0.259\right)-0.966\times 0.966}&\frac{0.259}{0.259\left(-0.259\right)-0.966\times 0.966}\end{matrix}\right)\left(\begin{matrix}540\\1000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{37000}{142891}&\frac{138000}{142891}\\\frac{138000}{142891}&-\frac{37000}{142891}\end{matrix}\right)\left(\begin{matrix}540\\1000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{37000}{142891}\times 540+\frac{138000}{142891}\times 1000\\\frac{138000}{142891}\times 540-\frac{37000}{142891}\times 1000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{157980000}{142891}\\\frac{5360000}{20413}\end{matrix}\right)
Do the arithmetic.
x=\frac{157980000}{142891},y=\frac{5360000}{20413}
Extract the matrix elements x and y.
0.259x+0.966y=540,0.966x-0.259y=1000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.966\times 0.259x+0.966\times 0.966y=0.966\times 540,0.259\times 0.966x+0.259\left(-0.259\right)y=0.259\times 1000
To make \frac{259x}{1000} and \frac{483x}{500} equal, multiply all terms on each side of the first equation by 0.966 and all terms on each side of the second by 0.259.
0.250194x+0.933156y=521.64,0.250194x-0.067081y=259
Simplify.
0.250194x-0.250194x+0.933156y+0.067081y=521.64-259
Subtract 0.250194x-0.067081y=259 from 0.250194x+0.933156y=521.64 by subtracting like terms on each side of the equal sign.
0.933156y+0.067081y=521.64-259
Add \frac{125097x}{500000} to -\frac{125097x}{500000}. Terms \frac{125097x}{500000} and -\frac{125097x}{500000} cancel out, leaving an equation with only one variable that can be solved.
1.000237y=521.64-259
Add \frac{233289y}{250000} to \frac{67081y}{1000000}.
1.000237y=262.64
Add 521.64 to -259.
y=\frac{5360000}{20413}
Divide both sides of the equation by 1.000237, which is the same as multiplying both sides by the reciprocal of the fraction.
0.966x-0.259\times \frac{5360000}{20413}=1000
Substitute \frac{5360000}{20413} for y in 0.966x-0.259y=1000. Because the resulting equation contains only one variable, you can solve for x directly.
0.966x-\frac{1388240}{20413}=1000
Multiply -0.259 times \frac{5360000}{20413} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
0.966x=\frac{21801240}{20413}
Add \frac{1388240}{20413} to both sides of the equation.
x=\frac{157980000}{142891}
Divide both sides of the equation by 0.966, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{157980000}{142891},y=\frac{5360000}{20413}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}