Solve for a, b
a=0
b=50
Share
Copied to clipboard
0.1=0.002\left(a+b\right)
Consider the first equation. Multiply 0.001 and 100 to get 0.1.
0.1=0.002a+0.002b
Use the distributive property to multiply 0.002 by a+b.
0.002a+0.002b=0.1
Swap sides so that all variable terms are on the left hand side.
0=0.009a
Consider the second equation. Anything times zero gives zero.
0.009a=0
Swap sides so that all variable terms are on the left hand side.
a=0
Divide both sides by 0.009. Zero divided by any non-zero number gives zero.
0.002\times 0+0.002b=0.1
Consider the first equation. Insert the known values of variables into the equation.
0+0.002b=0.1
Multiply 0.002 and 0 to get 0.
0.002b=0.1
Anything plus zero gives itself.
b=\frac{0.1}{0.002}
Divide both sides by 0.002.
b=\frac{100}{2}
Expand \frac{0.1}{0.002} by multiplying both numerator and the denominator by 1000.
b=50
Divide 100 by 2 to get 50.
a=0 b=50
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}