Solve for x, y
x = -\frac{43}{24} = -1\frac{19}{24} \approx -1.791666667
y=-\frac{8}{9}\approx -0.888888889
Graph
Share
Copied to clipboard
0-9y=8
Consider the first equation. Anything times zero gives zero.
-9y=8
Anything plus zero gives itself.
y=-\frac{8}{9}
Divide both sides by -9.
8x-15\left(-\frac{8}{9}\right)=-1
Consider the second equation. Insert the known values of variables into the equation.
8x+\frac{40}{3}=-1
Multiply -15 and -\frac{8}{9} to get \frac{40}{3}.
8x=-1-\frac{40}{3}
Subtract \frac{40}{3} from both sides.
8x=-\frac{43}{3}
Subtract \frac{40}{3} from -1 to get -\frac{43}{3}.
x=\frac{-\frac{43}{3}}{8}
Divide both sides by 8.
x=\frac{-43}{3\times 8}
Express \frac{-\frac{43}{3}}{8} as a single fraction.
x=\frac{-43}{24}
Multiply 3 and 8 to get 24.
x=-\frac{43}{24}
Fraction \frac{-43}{24} can be rewritten as -\frac{43}{24} by extracting the negative sign.
x=-\frac{43}{24} y=-\frac{8}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}