Solve for a, b
a=\frac{1}{2}=0.5
b=-2
Share
Copied to clipboard
16a+4b=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
36a+6b=6
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=0,36a+6b=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
16a+4b=0
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
16a=-4b
Subtract 4b from both sides of the equation.
a=\frac{1}{16}\left(-4\right)b
Divide both sides by 16.
a=-\frac{1}{4}b
Multiply \frac{1}{16} times -4b.
36\left(-\frac{1}{4}\right)b+6b=6
Substitute -\frac{b}{4} for a in the other equation, 36a+6b=6.
-9b+6b=6
Multiply 36 times -\frac{b}{4}.
-3b=6
Add -9b to 6b.
b=-2
Divide both sides by -3.
a=-\frac{1}{4}\left(-2\right)
Substitute -2 for b in a=-\frac{1}{4}b. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{1}{2}
Multiply -\frac{1}{4} times -2.
a=\frac{1}{2},b=-2
The system is now solved.
16a+4b=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
36a+6b=6
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=0,36a+6b=6
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}16&4\\36&6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\6\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}16&4\\36&6\end{matrix}\right))\left(\begin{matrix}16&4\\36&6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&4\\36&6\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}16&4\\36&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&4\\36&6\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&4\\36&6\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{6}{16\times 6-4\times 36}&-\frac{4}{16\times 6-4\times 36}\\-\frac{36}{16\times 6-4\times 36}&\frac{16}{16\times 6-4\times 36}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{1}{12}\\\frac{3}{4}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 6\\-\frac{1}{3}\times 6\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-2\end{matrix}\right)
Do the arithmetic.
a=\frac{1}{2},b=-2
Extract the matrix elements a and b.
16a+4b=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
36a+6b=6
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=0,36a+6b=6
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
36\times 16a+36\times 4b=0,16\times 36a+16\times 6b=16\times 6
To make 16a and 36a equal, multiply all terms on each side of the first equation by 36 and all terms on each side of the second by 16.
576a+144b=0,576a+96b=96
Simplify.
576a-576a+144b-96b=-96
Subtract 576a+96b=96 from 576a+144b=0 by subtracting like terms on each side of the equal sign.
144b-96b=-96
Add 576a to -576a. Terms 576a and -576a cancel out, leaving an equation with only one variable that can be solved.
48b=-96
Add 144b to -96b.
b=-2
Divide both sides by 48.
36a+6\left(-2\right)=6
Substitute -2 for b in 36a+6b=6. Because the resulting equation contains only one variable, you can solve for a directly.
36a-12=6
Multiply 6 times -2.
36a=18
Add 12 to both sides of the equation.
a=\frac{1}{2}
Divide both sides by 36.
a=\frac{1}{2},b=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}