Solve for r, y, z
y=4
z=2
r=-3
Share
Copied to clipboard
15+5r=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
5r=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
r=\frac{-15}{5}
Divide both sides by 5.
r=-3
Divide -15 by 5 to get -3.
y=-8-4\left(-3\right)
Consider the second equation. Insert the known values of variables into the equation.
y=-8+12
Multiply -4 and -3 to get 12.
y=4
Add -8 and 12 to get 4.
z=-4-2\left(-3\right)
Consider the third equation. Insert the known values of variables into the equation.
z=-4+6
Multiply -2 and -3 to get 6.
z=2
Add -4 and 6 to get 2.
r=-3 y=4 z=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}