\left. \begin{array} { l } { - y - ( x + y ) ( x - y ) + ( x - 2 y ) ( - 2 x + y ) } \\ { b ^ { 2 } - ( a ^ { 2 } - b ^ { 2 } ) ( a ^ { 2 } - b ^ { 2 } ) } \end{array} \right.
Least Common Multiple
\left(3x^{2}-5xy+y^{2}+y\right)\left(\left(a^{2}-b^{2}\right)^{2}-b^{2}\right)
Evaluate
-3x^{2}+5xy-y^{2}-y,\ -\left(a^{2}-b^{2}\right)^{2}+b^{2}
Share
Copied to clipboard
b^{2}-\left(a^{2}-b^{2}\right)^{2}=\left(-a^{2}+b^{2}+b\right)\left(a^{2}-b^{2}+b\right)
Factor the expressions that are not already factored.
\left(a^{2}-b^{2}-b\right)\left(a^{2}-b^{2}+b\right)\left(3x^{2}-5xy+y^{2}+y\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
-6a^{2}b^{2}x^{2}+3x^{2}a^{4}+3x^{2}b^{4}-3b^{2}x^{2}+10xya^{2}b^{2}-5xya^{4}-5xyb^{4}+5xyb^{2}+y^{2}a^{4}+y^{2}b^{4}-2a^{2}b^{2}y^{2}-b^{2}y^{2}+ya^{4}+yb^{4}-2ya^{2}b^{2}-yb^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}