Solve for x, y
x=-\frac{88}{3\left(c+12\right)}
y=-\frac{108-13c}{6\left(c+12\right)}
c\neq -12
Graph
Share
Copied to clipboard
-9x+6y=13,cx+8y=-12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-9x+6y=13
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-9x=-6y+13
Subtract 6y from both sides of the equation.
x=-\frac{1}{9}\left(-6y+13\right)
Divide both sides by -9.
x=\frac{2}{3}y-\frac{13}{9}
Multiply -\frac{1}{9} times -6y+13.
c\left(\frac{2}{3}y-\frac{13}{9}\right)+8y=-12
Substitute \frac{2y}{3}-\frac{13}{9} for x in the other equation, cx+8y=-12.
\frac{2c}{3}y-\frac{13c}{9}+8y=-12
Multiply c times \frac{2y}{3}-\frac{13}{9}.
\left(\frac{2c}{3}+8\right)y-\frac{13c}{9}=-12
Add \frac{2cy}{3} to 8y.
\left(\frac{2c}{3}+8\right)y=\frac{13c}{9}-12
Add \frac{13c}{9} to both sides of the equation.
y=\frac{13c-108}{6\left(c+12\right)}
Divide both sides by \frac{2c}{3}+8.
x=\frac{2}{3}\times \frac{13c-108}{6\left(c+12\right)}-\frac{13}{9}
Substitute \frac{-108+13c}{6\left(c+12\right)} for y in x=\frac{2}{3}y-\frac{13}{9}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{13c-108}{9\left(c+12\right)}-\frac{13}{9}
Multiply \frac{2}{3} times \frac{-108+13c}{6\left(c+12\right)}.
x=-\frac{88}{3\left(c+12\right)}
Add -\frac{13}{9} to \frac{-108+13c}{9\left(c+12\right)}.
x=-\frac{88}{3\left(c+12\right)},y=\frac{13c-108}{6\left(c+12\right)}
The system is now solved.
-9x+6y=13,cx+8y=-12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-9&6\\c&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}-9&6\\c&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}13\\-12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-9&6\\c&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}13\\-12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&6\\c&8\end{matrix}\right))\left(\begin{matrix}13\\-12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-9\times 8-6c}&-\frac{6}{-9\times 8-6c}\\-\frac{c}{-9\times 8-6c}&-\frac{9}{-9\times 8-6c}\end{matrix}\right)\left(\begin{matrix}13\\-12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(c+12\right)}&\frac{1}{c+12}\\\frac{c}{6\left(c+12\right)}&\frac{3}{2\left(c+12\right)}\end{matrix}\right)\left(\begin{matrix}13\\-12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{4}{3\left(c+12\right)}\right)\times 13+\frac{1}{c+12}\left(-12\right)\\\frac{c}{6\left(c+12\right)}\times 13+\frac{3}{2\left(c+12\right)}\left(-12\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{88}{3\left(c+12\right)}\\\frac{13c-108}{6\left(c+12\right)}\end{matrix}\right)
Do the arithmetic.
x=-\frac{88}{3\left(c+12\right)},y=\frac{13c-108}{6\left(c+12\right)}
Extract the matrix elements x and y.
-9x+6y=13,cx+8y=-12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
c\left(-9\right)x+c\times 6y=c\times 13,-9cx-9\times 8y=-9\left(-12\right)
To make -9x and cx equal, multiply all terms on each side of the first equation by c and all terms on each side of the second by -9.
\left(-9c\right)x+6cy=13c,\left(-9c\right)x-72y=108
Simplify.
\left(-9c\right)x+9cx+6cy+72y=13c-108
Subtract \left(-9c\right)x-72y=108 from \left(-9c\right)x+6cy=13c by subtracting like terms on each side of the equal sign.
6cy+72y=13c-108
Add -9cx to 9cx. Terms -9cx and 9cx cancel out, leaving an equation with only one variable that can be solved.
\left(6c+72\right)y=13c-108
Add 6cy to 72y.
y=\frac{13c-108}{6\left(c+12\right)}
Divide both sides by 72+6c.
cx+8\times \frac{13c-108}{6\left(c+12\right)}=-12
Substitute \frac{13c-108}{6\left(c+12\right)} for y in cx+8y=-12. Because the resulting equation contains only one variable, you can solve for x directly.
cx+\frac{4\left(13c-108\right)}{3\left(c+12\right)}=-12
Multiply 8 times \frac{13c-108}{6\left(c+12\right)}.
cx=-\frac{88c}{3\left(c+12\right)}
Subtract \frac{4\left(13c-108\right)}{3\left(c+12\right)} from both sides of the equation.
x=-\frac{88}{3\left(c+12\right)}
Divide both sides by c.
x=-\frac{88}{3\left(c+12\right)},y=\frac{13c-108}{6\left(c+12\right)}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}