Solve for x, y
x=-11
y = \frac{37}{3} = 12\frac{1}{3} \approx 12.333333333
Graph
Share
Copied to clipboard
-8x-6y=14,2x+6y=52
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-8x-6y=14
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-8x=6y+14
Add 6y to both sides of the equation.
x=-\frac{1}{8}\left(6y+14\right)
Divide both sides by -8.
x=-\frac{3}{4}y-\frac{7}{4}
Multiply -\frac{1}{8} times 6y+14.
2\left(-\frac{3}{4}y-\frac{7}{4}\right)+6y=52
Substitute \frac{-3y-7}{4} for x in the other equation, 2x+6y=52.
-\frac{3}{2}y-\frac{7}{2}+6y=52
Multiply 2 times \frac{-3y-7}{4}.
\frac{9}{2}y-\frac{7}{2}=52
Add -\frac{3y}{2} to 6y.
\frac{9}{2}y=\frac{111}{2}
Add \frac{7}{2} to both sides of the equation.
y=\frac{37}{3}
Divide both sides of the equation by \frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{4}\times \frac{37}{3}-\frac{7}{4}
Substitute \frac{37}{3} for y in x=-\frac{3}{4}y-\frac{7}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-37-7}{4}
Multiply -\frac{3}{4} times \frac{37}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-11
Add -\frac{7}{4} to -\frac{37}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-11,y=\frac{37}{3}
The system is now solved.
-8x-6y=14,2x+6y=52
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-8&-6\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\52\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-8&-6\\2&6\end{matrix}\right))\left(\begin{matrix}-8&-6\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\2&6\end{matrix}\right))\left(\begin{matrix}14\\52\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-8&-6\\2&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\2&6\end{matrix}\right))\left(\begin{matrix}14\\52\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\2&6\end{matrix}\right))\left(\begin{matrix}14\\52\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-8\times 6-\left(-6\times 2\right)}&-\frac{-6}{-8\times 6-\left(-6\times 2\right)}\\-\frac{2}{-8\times 6-\left(-6\times 2\right)}&-\frac{8}{-8\times 6-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}14\\52\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&-\frac{1}{6}\\\frac{1}{18}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}14\\52\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 14-\frac{1}{6}\times 52\\\frac{1}{18}\times 14+\frac{2}{9}\times 52\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\\frac{37}{3}\end{matrix}\right)
Do the arithmetic.
x=-11,y=\frac{37}{3}
Extract the matrix elements x and y.
-8x-6y=14,2x+6y=52
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\left(-8\right)x+2\left(-6\right)y=2\times 14,-8\times 2x-8\times 6y=-8\times 52
To make -8x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by -8.
-16x-12y=28,-16x-48y=-416
Simplify.
-16x+16x-12y+48y=28+416
Subtract -16x-48y=-416 from -16x-12y=28 by subtracting like terms on each side of the equal sign.
-12y+48y=28+416
Add -16x to 16x. Terms -16x and 16x cancel out, leaving an equation with only one variable that can be solved.
36y=28+416
Add -12y to 48y.
36y=444
Add 28 to 416.
y=\frac{37}{3}
Divide both sides by 36.
2x+6\times \frac{37}{3}=52
Substitute \frac{37}{3} for y in 2x+6y=52. Because the resulting equation contains only one variable, you can solve for x directly.
2x+74=52
Multiply 6 times \frac{37}{3}.
2x=-22
Subtract 74 from both sides of the equation.
x=-11
Divide both sides by 2.
x=-11,y=\frac{37}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}