Skip to main content
Solve for I_1, I_2
Tick mark Image

Similar Problems from Web Search

Share

27I_{1}+20I_{2}=-5
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
20I_{1}+35I_{2}=-10
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
27I_{1}+20I_{2}=-5,20I_{1}+35I_{2}=-10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
27I_{1}+20I_{2}=-5
Choose one of the equations and solve it for I_{1} by isolating I_{1} on the left hand side of the equal sign.
27I_{1}=-20I_{2}-5
Subtract 20I_{2} from both sides of the equation.
I_{1}=\frac{1}{27}\left(-20I_{2}-5\right)
Divide both sides by 27.
I_{1}=-\frac{20}{27}I_{2}-\frac{5}{27}
Multiply \frac{1}{27} times -20I_{2}-5.
20\left(-\frac{20}{27}I_{2}-\frac{5}{27}\right)+35I_{2}=-10
Substitute \frac{-20I_{2}-5}{27} for I_{1} in the other equation, 20I_{1}+35I_{2}=-10.
-\frac{400}{27}I_{2}-\frac{100}{27}+35I_{2}=-10
Multiply 20 times \frac{-20I_{2}-5}{27}.
\frac{545}{27}I_{2}-\frac{100}{27}=-10
Add -\frac{400I_{2}}{27} to 35I_{2}.
\frac{545}{27}I_{2}=-\frac{170}{27}
Add \frac{100}{27} to both sides of the equation.
I_{2}=-\frac{34}{109}
Divide both sides of the equation by \frac{545}{27}, which is the same as multiplying both sides by the reciprocal of the fraction.
I_{1}=-\frac{20}{27}\left(-\frac{34}{109}\right)-\frac{5}{27}
Substitute -\frac{34}{109} for I_{2} in I_{1}=-\frac{20}{27}I_{2}-\frac{5}{27}. Because the resulting equation contains only one variable, you can solve for I_{1} directly.
I_{1}=\frac{680}{2943}-\frac{5}{27}
Multiply -\frac{20}{27} times -\frac{34}{109} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
I_{1}=\frac{5}{109}
Add -\frac{5}{27} to \frac{680}{2943} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
I_{1}=\frac{5}{109},I_{2}=-\frac{34}{109}
The system is now solved.
27I_{1}+20I_{2}=-5
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
20I_{1}+35I_{2}=-10
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
27I_{1}+20I_{2}=-5,20I_{1}+35I_{2}=-10
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}27&20\\20&35\end{matrix}\right)\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}-5\\-10\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}27&20\\20&35\end{matrix}\right))\left(\begin{matrix}27&20\\20&35\end{matrix}\right)\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}27&20\\20&35\end{matrix}\right))\left(\begin{matrix}-5\\-10\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}27&20\\20&35\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}27&20\\20&35\end{matrix}\right))\left(\begin{matrix}-5\\-10\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}27&20\\20&35\end{matrix}\right))\left(\begin{matrix}-5\\-10\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{35}{27\times 35-20\times 20}&-\frac{20}{27\times 35-20\times 20}\\-\frac{20}{27\times 35-20\times 20}&\frac{27}{27\times 35-20\times 20}\end{matrix}\right)\left(\begin{matrix}-5\\-10\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{7}{109}&-\frac{4}{109}\\-\frac{4}{109}&\frac{27}{545}\end{matrix}\right)\left(\begin{matrix}-5\\-10\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{7}{109}\left(-5\right)-\frac{4}{109}\left(-10\right)\\-\frac{4}{109}\left(-5\right)+\frac{27}{545}\left(-10\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{5}{109}\\-\frac{34}{109}\end{matrix}\right)
Do the arithmetic.
I_{1}=\frac{5}{109},I_{2}=-\frac{34}{109}
Extract the matrix elements I_{1} and I_{2}.
27I_{1}+20I_{2}=-5
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
20I_{1}+35I_{2}=-10
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
27I_{1}+20I_{2}=-5,20I_{1}+35I_{2}=-10
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20\times 27I_{1}+20\times 20I_{2}=20\left(-5\right),27\times 20I_{1}+27\times 35I_{2}=27\left(-10\right)
To make 27I_{1} and 20I_{1} equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 27.
540I_{1}+400I_{2}=-100,540I_{1}+945I_{2}=-270
Simplify.
540I_{1}-540I_{1}+400I_{2}-945I_{2}=-100+270
Subtract 540I_{1}+945I_{2}=-270 from 540I_{1}+400I_{2}=-100 by subtracting like terms on each side of the equal sign.
400I_{2}-945I_{2}=-100+270
Add 540I_{1} to -540I_{1}. Terms 540I_{1} and -540I_{1} cancel out, leaving an equation with only one variable that can be solved.
-545I_{2}=-100+270
Add 400I_{2} to -945I_{2}.
-545I_{2}=170
Add -100 to 270.
I_{2}=-\frac{34}{109}
Divide both sides by -545.
20I_{1}+35\left(-\frac{34}{109}\right)=-10
Substitute -\frac{34}{109} for I_{2} in 20I_{1}+35I_{2}=-10. Because the resulting equation contains only one variable, you can solve for I_{1} directly.
20I_{1}-\frac{1190}{109}=-10
Multiply 35 times -\frac{34}{109}.
20I_{1}=\frac{100}{109}
Add \frac{1190}{109} to both sides of the equation.
I_{1}=\frac{5}{109}
Divide both sides by 20.
I_{1}=\frac{5}{109},I_{2}=-\frac{34}{109}
The system is now solved.