Solve for x, y
x=-4
y=-4
Graph
Share
Copied to clipboard
-4x=16
Consider the second equation. Combine -9x and 5x to get -4x.
x=\frac{16}{-4}
Divide both sides by -4.
x=-4
Divide 16 by -4 to get -4.
-3\left(-4\right)+7y=-16
Consider the first equation. Insert the known values of variables into the equation.
12+7y=-16
Multiply -3 and -4 to get 12.
7y=-16-12
Subtract 12 from both sides.
7y=-28
Subtract 12 from -16 to get -28.
y=\frac{-28}{7}
Divide both sides by 7.
y=-4
Divide -28 by 7 to get -4.
x=-4 y=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}