Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-y^{2}+2y\right)
Factor out 2.
y\left(-y+2\right)
Consider -y^{2}+2y. Factor out y.
2y\left(-y+2\right)
Rewrite the complete factored expression.
-2y^{2}+4y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-4±\sqrt{4^{2}}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-4±4}{2\left(-2\right)}
Take the square root of 4^{2}.
y=\frac{-4±4}{-4}
Multiply 2 times -2.
y=\frac{0}{-4}
Now solve the equation y=\frac{-4±4}{-4} when ± is plus. Add -4 to 4.
y=0
Divide 0 by -4.
y=-\frac{8}{-4}
Now solve the equation y=\frac{-4±4}{-4} when ± is minus. Subtract 4 from -4.
y=2
Divide -8 by -4.
-2y^{2}+4y=-2y\left(y-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 2 for x_{2}.