\left. \begin{array} { l } { - 15 + 10 + 7 - 8 = - 6 \quad - 33 } \\ { 42 + ( - 5 ) - ( - 39 ) + 4 = ( 42 + - 5 ) ( 39 + 4 ) } \end{array} \right.
Verify
false
Share
Copied to clipboard
-5+7-8=-6-33\text{ and }42-5-\left(-39\right)+4=\left(42-5\right)\left(39+4\right)
Add -15 and 10 to get -5.
2-8=-6-33\text{ and }42-5-\left(-39\right)+4=\left(42-5\right)\left(39+4\right)
Add -5 and 7 to get 2.
-6=-6-33\text{ and }42-5-\left(-39\right)+4=\left(42-5\right)\left(39+4\right)
Subtract 8 from 2 to get -6.
-6=-39\text{ and }42-5-\left(-39\right)+4=\left(42-5\right)\left(39+4\right)
Subtract 33 from -6 to get -39.
\text{false}\text{ and }42-5-\left(-39\right)+4=\left(42-5\right)\left(39+4\right)
Compare -6 and -39.
\text{false}\text{ and }37-\left(-39\right)+4=\left(42-5\right)\left(39+4\right)
Subtract 5 from 42 to get 37.
\text{false}\text{ and }37+39+4=\left(42-5\right)\left(39+4\right)
The opposite of -39 is 39.
\text{false}\text{ and }76+4=\left(42-5\right)\left(39+4\right)
Add 37 and 39 to get 76.
\text{false}\text{ and }80=\left(42-5\right)\left(39+4\right)
Add 76 and 4 to get 80.
\text{false}\text{ and }80=37\left(39+4\right)
Subtract 5 from 42 to get 37.
\text{false}\text{ and }80=37\times 43
Add 39 and 4 to get 43.
\text{false}\text{ and }80=1591
Multiply 37 and 43 to get 1591.
\text{false}\text{ and }\text{false}
Compare 80 and 1591.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}