Solve for y, x
x=5
y=-6
Graph
Share
Copied to clipboard
15y-6x=-120
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
-5y+5-7x=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
-5y-7x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
15y-6x=-120,-5y-7x=-5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15y-6x=-120
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
15y=6x-120
Add 6x to both sides of the equation.
y=\frac{1}{15}\left(6x-120\right)
Divide both sides by 15.
y=\frac{2}{5}x-8
Multiply \frac{1}{15} times -120+6x.
-5\left(\frac{2}{5}x-8\right)-7x=-5
Substitute \frac{2x}{5}-8 for y in the other equation, -5y-7x=-5.
-2x+40-7x=-5
Multiply -5 times \frac{2x}{5}-8.
-9x+40=-5
Add -2x to -7x.
-9x=-45
Subtract 40 from both sides of the equation.
x=5
Divide both sides by -9.
y=\frac{2}{5}\times 5-8
Substitute 5 for x in y=\frac{2}{5}x-8. Because the resulting equation contains only one variable, you can solve for y directly.
y=2-8
Multiply \frac{2}{5} times 5.
y=-6
Add -8 to 2.
y=-6,x=5
The system is now solved.
15y-6x=-120
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
-5y+5-7x=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
-5y-7x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
15y-6x=-120,-5y-7x=-5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&-6\\-5&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-120\\-5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&-6\\-5&-7\end{matrix}\right))\left(\begin{matrix}15&-6\\-5&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}15&-6\\-5&-7\end{matrix}\right))\left(\begin{matrix}-120\\-5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&-6\\-5&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}15&-6\\-5&-7\end{matrix}\right))\left(\begin{matrix}-120\\-5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}15&-6\\-5&-7\end{matrix}\right))\left(\begin{matrix}-120\\-5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{15\left(-7\right)-\left(-6\left(-5\right)\right)}&-\frac{-6}{15\left(-7\right)-\left(-6\left(-5\right)\right)}\\-\frac{-5}{15\left(-7\right)-\left(-6\left(-5\right)\right)}&\frac{15}{15\left(-7\right)-\left(-6\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-120\\-5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{135}&-\frac{2}{45}\\-\frac{1}{27}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}-120\\-5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{135}\left(-120\right)-\frac{2}{45}\left(-5\right)\\-\frac{1}{27}\left(-120\right)-\frac{1}{9}\left(-5\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\5\end{matrix}\right)
Do the arithmetic.
y=-6,x=5
Extract the matrix elements y and x.
15y-6x=-120
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
-5y+5-7x=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
-5y-7x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
15y-6x=-120,-5y-7x=-5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-5\times 15y-5\left(-6\right)x=-5\left(-120\right),15\left(-5\right)y+15\left(-7\right)x=15\left(-5\right)
To make 15y and -5y equal, multiply all terms on each side of the first equation by -5 and all terms on each side of the second by 15.
-75y+30x=600,-75y-105x=-75
Simplify.
-75y+75y+30x+105x=600+75
Subtract -75y-105x=-75 from -75y+30x=600 by subtracting like terms on each side of the equal sign.
30x+105x=600+75
Add -75y to 75y. Terms -75y and 75y cancel out, leaving an equation with only one variable that can be solved.
135x=600+75
Add 30x to 105x.
135x=675
Add 600 to 75.
x=5
Divide both sides by 135.
-5y-7\times 5=-5
Substitute 5 for x in -5y-7x=-5. Because the resulting equation contains only one variable, you can solve for y directly.
-5y-35=-5
Multiply -7 times 5.
-5y=30
Add 35 to both sides of the equation.
y=-6
Divide both sides by -5.
y=-6,x=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}