Solve for x, y
x=0
y=-8
Graph
Share
Copied to clipboard
-12x-5y=40,12x-11y=88
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-12x-5y=40
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-12x=5y+40
Add 5y to both sides of the equation.
x=-\frac{1}{12}\left(5y+40\right)
Divide both sides by -12.
x=-\frac{5}{12}y-\frac{10}{3}
Multiply -\frac{1}{12} times 40+5y.
12\left(-\frac{5}{12}y-\frac{10}{3}\right)-11y=88
Substitute -\frac{5y}{12}-\frac{10}{3} for x in the other equation, 12x-11y=88.
-5y-40-11y=88
Multiply 12 times -\frac{5y}{12}-\frac{10}{3}.
-16y-40=88
Add -5y to -11y.
-16y=128
Add 40 to both sides of the equation.
y=-8
Divide both sides by -16.
x=-\frac{5}{12}\left(-8\right)-\frac{10}{3}
Substitute -8 for y in x=-\frac{5}{12}y-\frac{10}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{10-10}{3}
Multiply -\frac{5}{12} times -8.
x=0
Add -\frac{10}{3} to \frac{10}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0,y=-8
The system is now solved.
-12x-5y=40,12x-11y=88
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\88\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{-12\left(-11\right)-\left(-5\times 12\right)}&-\frac{-5}{-12\left(-11\right)-\left(-5\times 12\right)}\\-\frac{12}{-12\left(-11\right)-\left(-5\times 12\right)}&-\frac{12}{-12\left(-11\right)-\left(-5\times 12\right)}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{192}&\frac{5}{192}\\-\frac{1}{16}&-\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{192}\times 40+\frac{5}{192}\times 88\\-\frac{1}{16}\times 40-\frac{1}{16}\times 88\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-8\end{matrix}\right)
Do the arithmetic.
x=0,y=-8
Extract the matrix elements x and y.
-12x-5y=40,12x-11y=88
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12\left(-12\right)x+12\left(-5\right)y=12\times 40,-12\times 12x-12\left(-11\right)y=-12\times 88
To make -12x and 12x equal, multiply all terms on each side of the first equation by 12 and all terms on each side of the second by -12.
-144x-60y=480,-144x+132y=-1056
Simplify.
-144x+144x-60y-132y=480+1056
Subtract -144x+132y=-1056 from -144x-60y=480 by subtracting like terms on each side of the equal sign.
-60y-132y=480+1056
Add -144x to 144x. Terms -144x and 144x cancel out, leaving an equation with only one variable that can be solved.
-192y=480+1056
Add -60y to -132y.
-192y=1536
Add 480 to 1056.
y=-8
Divide both sides by -192.
12x-11\left(-8\right)=88
Substitute -8 for y in 12x-11y=88. Because the resulting equation contains only one variable, you can solve for x directly.
12x+88=88
Multiply -11 times -8.
12x=0
Subtract 88 from both sides of the equation.
x=0
Divide both sides by 12.
x=0,y=-8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}