Solve for x, y
x=-1
y=44
Graph
Share
Copied to clipboard
-12x+7+7x=12
Consider the first equation. Add 7x to both sides.
-5x+7=12
Combine -12x and 7x to get -5x.
-5x=12-7
Subtract 7 from both sides.
-5x=5
Subtract 7 from 12 to get 5.
x=\frac{5}{-5}
Divide both sides by -5.
x=-1
Divide 5 by -5 to get -1.
|3\left(-1\right)-11|+\frac{1}{2}y=|3\left(-1\right)|-11+y
Consider the second equation. Insert the known values of variables into the equation.
|-3-11|+\frac{1}{2}y=|3\left(-1\right)|-11+y
Multiply 3 and -1 to get -3.
|-14|+\frac{1}{2}y=|3\left(-1\right)|-11+y
Subtract 11 from -3 to get -14.
14+\frac{1}{2}y=|3\left(-1\right)|-11+y
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -14 is 14.
14+\frac{1}{2}y=|-3|-11+y
Multiply 3 and -1 to get -3.
14+\frac{1}{2}y=3-11+y
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -3 is 3.
14+\frac{1}{2}y=-8+y
Subtract 11 from 3 to get -8.
14+\frac{1}{2}y-y=-8
Subtract y from both sides.
14-\frac{1}{2}y=-8
Combine \frac{1}{2}y and -y to get -\frac{1}{2}y.
-\frac{1}{2}y=-8-14
Subtract 14 from both sides.
-\frac{1}{2}y=-22
Subtract 14 from -8 to get -22.
y=-22\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
y=44
Multiply -22 and -2 to get 44.
x=-1 y=44
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}