Solve for x, y
x=4
y=4
Graph
Share
Copied to clipboard
7x-4y=12
Consider the first equation. Add 12 to both sides. Anything plus zero gives itself.
12+x-4y=0
Consider the second equation. Subtract 4y from both sides.
x-4y=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
7x-4y=12,x-4y=-12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7x-4y=12
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
7x=4y+12
Add 4y to both sides of the equation.
x=\frac{1}{7}\left(4y+12\right)
Divide both sides by 7.
x=\frac{4}{7}y+\frac{12}{7}
Multiply \frac{1}{7} times 12+4y.
\frac{4}{7}y+\frac{12}{7}-4y=-12
Substitute \frac{12+4y}{7} for x in the other equation, x-4y=-12.
-\frac{24}{7}y+\frac{12}{7}=-12
Add \frac{4y}{7} to -4y.
-\frac{24}{7}y=-\frac{96}{7}
Subtract \frac{12}{7} from both sides of the equation.
y=4
Divide both sides of the equation by -\frac{24}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{4}{7}\times 4+\frac{12}{7}
Substitute 4 for y in x=\frac{4}{7}y+\frac{12}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{16+12}{7}
Multiply \frac{4}{7} times 4.
x=4
Add \frac{12}{7} to \frac{16}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=4,y=4
The system is now solved.
7x-4y=12
Consider the first equation. Add 12 to both sides. Anything plus zero gives itself.
12+x-4y=0
Consider the second equation. Subtract 4y from both sides.
x-4y=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
7x-4y=12,x-4y=-12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&-4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\-12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}7&-4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}12\\-12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&-4\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}12\\-12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}12\\-12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7\left(-4\right)-\left(-4\right)}&-\frac{-4}{7\left(-4\right)-\left(-4\right)}\\-\frac{1}{7\left(-4\right)-\left(-4\right)}&\frac{7}{7\left(-4\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}12\\-12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\\frac{1}{24}&-\frac{7}{24}\end{matrix}\right)\left(\begin{matrix}12\\-12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 12-\frac{1}{6}\left(-12\right)\\\frac{1}{24}\times 12-\frac{7}{24}\left(-12\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
Do the arithmetic.
x=4,y=4
Extract the matrix elements x and y.
7x-4y=12
Consider the first equation. Add 12 to both sides. Anything plus zero gives itself.
12+x-4y=0
Consider the second equation. Subtract 4y from both sides.
x-4y=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
7x-4y=12,x-4y=-12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7x-x-4y+4y=12+12
Subtract x-4y=-12 from 7x-4y=12 by subtracting like terms on each side of the equal sign.
7x-x=12+12
Add -4y to 4y. Terms -4y and 4y cancel out, leaving an equation with only one variable that can be solved.
6x=12+12
Add 7x to -x.
6x=24
Add 12 to 12.
x=4
Divide both sides by 6.
4-4y=-12
Substitute 4 for x in x-4y=-12. Because the resulting equation contains only one variable, you can solve for y directly.
-4y=-16
Subtract 4 from both sides of the equation.
x=4,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}