Solve for x, y
x=4
y=25
Graph
Share
Copied to clipboard
-10x+20y=460,30x+60y=1620
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-10x+20y=460
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-10x=-20y+460
Subtract 20y from both sides of the equation.
x=-\frac{1}{10}\left(-20y+460\right)
Divide both sides by -10.
x=2y-46
Multiply -\frac{1}{10} times -20y+460.
30\left(2y-46\right)+60y=1620
Substitute -46+2y for x in the other equation, 30x+60y=1620.
60y-1380+60y=1620
Multiply 30 times -46+2y.
120y-1380=1620
Add 60y to 60y.
120y=3000
Add 1380 to both sides of the equation.
y=25
Divide both sides by 120.
x=2\times 25-46
Substitute 25 for y in x=2y-46. Because the resulting equation contains only one variable, you can solve for x directly.
x=50-46
Multiply 2 times 25.
x=4
Add -46 to 50.
x=4,y=25
The system is now solved.
-10x+20y=460,30x+60y=1620
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}460\\1620\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-10&20\\30&60\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{-10\times 60-20\times 30}&-\frac{20}{-10\times 60-20\times 30}\\-\frac{30}{-10\times 60-20\times 30}&-\frac{10}{-10\times 60-20\times 30}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&\frac{1}{60}\\\frac{1}{40}&\frac{1}{120}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\times 460+\frac{1}{60}\times 1620\\\frac{1}{40}\times 460+\frac{1}{120}\times 1620\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\25\end{matrix}\right)
Do the arithmetic.
x=4,y=25
Extract the matrix elements x and y.
-10x+20y=460,30x+60y=1620
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
30\left(-10\right)x+30\times 20y=30\times 460,-10\times 30x-10\times 60y=-10\times 1620
To make -10x and 30x equal, multiply all terms on each side of the first equation by 30 and all terms on each side of the second by -10.
-300x+600y=13800,-300x-600y=-16200
Simplify.
-300x+300x+600y+600y=13800+16200
Subtract -300x-600y=-16200 from -300x+600y=13800 by subtracting like terms on each side of the equal sign.
600y+600y=13800+16200
Add -300x to 300x. Terms -300x and 300x cancel out, leaving an equation with only one variable that can be solved.
1200y=13800+16200
Add 600y to 600y.
1200y=30000
Add 13800 to 16200.
y=25
Divide both sides by 1200.
30x+60\times 25=1620
Substitute 25 for y in 30x+60y=1620. Because the resulting equation contains only one variable, you can solve for x directly.
30x+1500=1620
Multiply 60 times 25.
30x=120
Subtract 1500 from both sides of the equation.
x=4
Divide both sides by 30.
x=4,y=25
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}