Solve for x, y
x=-500
y=1000
Graph
Share
Copied to clipboard
-0.5x+0.1y=350,0.4x+0.2y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-0.5x+0.1y=350
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-0.5x=-0.1y+350
Subtract \frac{y}{10} from both sides of the equation.
x=-2\left(-0.1y+350\right)
Multiply both sides by -2.
x=0.2y-700
Multiply -2 times -\frac{y}{10}+350.
0.4\left(0.2y-700\right)+0.2y=0
Substitute \frac{y}{5}-700 for x in the other equation, 0.4x+0.2y=0.
0.08y-280+0.2y=0
Multiply 0.4 times \frac{y}{5}-700.
0.28y-280=0
Add \frac{2y}{25} to \frac{y}{5}.
0.28y=280
Add 280 to both sides of the equation.
y=1000
Divide both sides of the equation by 0.28, which is the same as multiplying both sides by the reciprocal of the fraction.
x=0.2\times 1000-700
Substitute 1000 for y in x=0.2y-700. Because the resulting equation contains only one variable, you can solve for x directly.
x=200-700
Multiply 0.2 times 1000.
x=-500
Add -700 to 200.
x=-500,y=1000
The system is now solved.
-0.5x+0.1y=350,0.4x+0.2y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}350\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.2}{-0.5\times 0.2-0.1\times 0.4}&-\frac{0.1}{-0.5\times 0.2-0.1\times 0.4}\\-\frac{0.4}{-0.5\times 0.2-0.1\times 0.4}&-\frac{0.5}{-0.5\times 0.2-0.1\times 0.4}\end{matrix}\right)\left(\begin{matrix}350\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{7}&\frac{5}{7}\\\frac{20}{7}&\frac{25}{7}\end{matrix}\right)\left(\begin{matrix}350\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{7}\times 350\\\frac{20}{7}\times 350\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-500\\1000\end{matrix}\right)
Do the arithmetic.
x=-500,y=1000
Extract the matrix elements x and y.
-0.5x+0.1y=350,0.4x+0.2y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.4\left(-0.5\right)x+0.4\times 0.1y=0.4\times 350,-0.5\times 0.4x-0.5\times 0.2y=0
To make -\frac{x}{2} and \frac{2x}{5} equal, multiply all terms on each side of the first equation by 0.4 and all terms on each side of the second by -0.5.
-0.2x+0.04y=140,-0.2x-0.1y=0
Simplify.
-0.2x+0.2x+0.04y+0.1y=140
Subtract -0.2x-0.1y=0 from -0.2x+0.04y=140 by subtracting like terms on each side of the equal sign.
0.04y+0.1y=140
Add -\frac{x}{5} to \frac{x}{5}. Terms -\frac{x}{5} and \frac{x}{5} cancel out, leaving an equation with only one variable that can be solved.
0.14y=140
Add \frac{y}{25} to \frac{y}{10}.
y=1000
Divide both sides of the equation by 0.14, which is the same as multiplying both sides by the reciprocal of the fraction.
0.4x+0.2\times 1000=0
Substitute 1000 for y in 0.4x+0.2y=0. Because the resulting equation contains only one variable, you can solve for x directly.
0.4x+200=0
Multiply 0.2 times 1000.
0.4x=-200
Subtract 200 from both sides of the equation.
x=-500
Divide both sides of the equation by 0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-500,y=1000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}