Solve for x, y
x = -\frac{45}{32} = -1\frac{13}{32} = -1.40625
y = -\frac{47}{12} = -3\frac{11}{12} \approx -3.916666667
Graph
Share
Copied to clipboard
-\frac{8}{3}x=3+\frac{3}{4}
Consider the first equation. Add \frac{3}{4} to both sides.
-\frac{8}{3}x=\frac{15}{4}
Add 3 and \frac{3}{4} to get \frac{15}{4}.
x=\frac{15}{4}\left(-\frac{3}{8}\right)
Multiply both sides by -\frac{3}{8}, the reciprocal of -\frac{8}{3}.
x=-\frac{45}{32}
Multiply \frac{15}{4} and -\frac{3}{8} to get -\frac{45}{32}.
-\frac{4}{3}\left(-\frac{45}{32}\right)+\frac{6}{4}y=-4
Consider the second equation. Insert the known values of variables into the equation.
\frac{15}{8}+\frac{6}{4}y=-4
Multiply -\frac{4}{3} and -\frac{45}{32} to get \frac{15}{8}.
\frac{15}{8}+\frac{3}{2}y=-4
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}y=-4-\frac{15}{8}
Subtract \frac{15}{8} from both sides.
\frac{3}{2}y=-\frac{47}{8}
Subtract \frac{15}{8} from -4 to get -\frac{47}{8}.
y=-\frac{47}{8}\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}.
y=-\frac{47}{12}
Multiply -\frac{47}{8} and \frac{2}{3} to get -\frac{47}{12}.
x=-\frac{45}{32} y=-\frac{47}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}