Evaluate
-\frac{15}{52}\approx -0.288461538
Factor
-\frac{15}{52} = -0.28846153846153844
Share
Copied to clipboard
-\frac{47}{120}+\frac{1}{35}+\frac{1}{6\times 8}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Multiply 5 and 7 to get 35.
-\frac{329}{840}+\frac{24}{840}+\frac{1}{6\times 8}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Least common multiple of 120 and 35 is 840. Convert -\frac{47}{120} and \frac{1}{35} to fractions with denominator 840.
\frac{-329+24}{840}+\frac{1}{6\times 8}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Since -\frac{329}{840} and \frac{24}{840} have the same denominator, add them by adding their numerators.
\frac{-305}{840}+\frac{1}{6\times 8}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Add -329 and 24 to get -305.
-\frac{61}{168}+\frac{1}{6\times 8}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Reduce the fraction \frac{-305}{840} to lowest terms by extracting and canceling out 5.
-\frac{61}{168}+\frac{1}{48}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Multiply 6 and 8 to get 48.
-\frac{122}{336}+\frac{7}{336}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Least common multiple of 168 and 48 is 336. Convert -\frac{61}{168} and \frac{1}{48} to fractions with denominator 336.
\frac{-122+7}{336}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Since -\frac{122}{336} and \frac{7}{336} have the same denominator, add them by adding their numerators.
-\frac{115}{336}+\frac{1}{7\times 9}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Add -122 and 7 to get -115.
-\frac{115}{336}+\frac{1}{63}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Multiply 7 and 9 to get 63.
-\frac{345}{1008}+\frac{16}{1008}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Least common multiple of 336 and 63 is 1008. Convert -\frac{115}{336} and \frac{1}{63} to fractions with denominator 1008.
\frac{-345+16}{1008}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Since -\frac{345}{1008} and \frac{16}{1008} have the same denominator, add them by adding their numerators.
\frac{-329}{1008}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Add -345 and 16 to get -329.
-\frac{47}{144}+\frac{1}{8\times 10}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Reduce the fraction \frac{-329}{1008} to lowest terms by extracting and canceling out 7.
-\frac{47}{144}+\frac{1}{80}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Multiply 8 and 10 to get 80.
-\frac{235}{720}+\frac{9}{720}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Least common multiple of 144 and 80 is 720. Convert -\frac{47}{144} and \frac{1}{80} to fractions with denominator 720.
\frac{-235+9}{720}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Since -\frac{235}{720} and \frac{9}{720} have the same denominator, add them by adding their numerators.
\frac{-226}{720}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Add -235 and 9 to get -226.
-\frac{113}{360}+\frac{1}{9\times 11}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Reduce the fraction \frac{-226}{720} to lowest terms by extracting and canceling out 2.
-\frac{113}{360}+\frac{1}{99}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Multiply 9 and 11 to get 99.
-\frac{1243}{3960}+\frac{40}{3960}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Least common multiple of 360 and 99 is 3960. Convert -\frac{113}{360} and \frac{1}{99} to fractions with denominator 3960.
\frac{-1243+40}{3960}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Since -\frac{1243}{3960} and \frac{40}{3960} have the same denominator, add them by adding their numerators.
\frac{-1203}{3960}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Add -1243 and 40 to get -1203.
-\frac{401}{1320}+\frac{1}{10\times 12}+\frac{1}{11\times 13}
Reduce the fraction \frac{-1203}{3960} to lowest terms by extracting and canceling out 3.
-\frac{401}{1320}+\frac{1}{120}+\frac{1}{11\times 13}
Multiply 10 and 12 to get 120.
-\frac{401}{1320}+\frac{11}{1320}+\frac{1}{11\times 13}
Least common multiple of 1320 and 120 is 1320. Convert -\frac{401}{1320} and \frac{1}{120} to fractions with denominator 1320.
\frac{-401+11}{1320}+\frac{1}{11\times 13}
Since -\frac{401}{1320} and \frac{11}{1320} have the same denominator, add them by adding their numerators.
\frac{-390}{1320}+\frac{1}{11\times 13}
Add -401 and 11 to get -390.
-\frac{13}{44}+\frac{1}{11\times 13}
Reduce the fraction \frac{-390}{1320} to lowest terms by extracting and canceling out 30.
-\frac{13}{44}+\frac{1}{143}
Multiply 11 and 13 to get 143.
-\frac{169}{572}+\frac{4}{572}
Least common multiple of 44 and 143 is 572. Convert -\frac{13}{44} and \frac{1}{143} to fractions with denominator 572.
\frac{-169+4}{572}
Since -\frac{169}{572} and \frac{4}{572} have the same denominator, add them by adding their numerators.
\frac{-165}{572}
Add -169 and 4 to get -165.
-\frac{15}{52}
Reduce the fraction \frac{-165}{572} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}