Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{2x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply -\frac{2x}{x-1} times \frac{x+2}{x+2}. Multiply \frac{x-1}{x+2} times \frac{x-1}{x-1}.
\frac{-2x\left(x+2\right)-\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
Since -\frac{2x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}-4x-x^{2}+x+x-1}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
Do the multiplications in -2x\left(x+2\right)-\left(x-1\right)\left(x-1\right).
\frac{-3x^{2}-2x-1}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
Combine like terms in -2x^{2}-4x-x^{2}+x+x-1.
\frac{-3x^{2}-2x-1}{\left(x-1\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and x-1 is \left(x-1\right)\left(x+2\right). Multiply \frac{3}{x-1} times \frac{x+2}{x+2}.
\frac{-3x^{2}-2x-1+3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
Since \frac{-3x^{2}-2x-1}{\left(x-1\right)\left(x+2\right)} and \frac{3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-3x^{2}-2x-1+3x+6}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
Do the multiplications in -3x^{2}-2x-1+3\left(x+2\right).
\frac{-3x^{2}+x+5}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
Combine like terms in -3x^{2}-2x-1+3x+6.
\frac{\left(-3x^{2}+x+5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{4\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and x+1 is \left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{-3x^{2}+x+5}{\left(x-1\right)\left(x+2\right)} times \frac{x+1}{x+1}. Multiply \frac{4}{x+1} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{\left(-3x^{2}+x+5\right)\left(x+1\right)-4\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{\left(-3x^{2}+x+5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{4\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{3}-3x^{2}+x^{2}+x+5x+5-4x^{2}-8x+4x+8}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(-3x^{2}+x+5\right)\left(x+1\right)-4\left(x-1\right)\left(x+2\right).
\frac{-3x^{3}-6x^{2}+2x+13}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in -3x^{3}-3x^{2}+x^{2}+x+5x+5-4x^{2}-8x+4x+8.
\frac{-3x^{3}-6x^{2}+2x+13}{x^{3}+2x^{2}-x-2}
Expand \left(x-1\right)\left(x+1\right)\left(x+2\right).
-\frac{2x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+2 is \left(x-1\right)\left(x+2\right). Multiply -\frac{2x}{x-1} times \frac{x+2}{x+2}. Multiply \frac{x-1}{x+2} times \frac{x-1}{x-1}.
\frac{-2x\left(x+2\right)-\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
Since -\frac{2x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}-4x-x^{2}+x+x-1}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
Do the multiplications in -2x\left(x+2\right)-\left(x-1\right)\left(x-1\right).
\frac{-3x^{2}-2x-1}{\left(x-1\right)\left(x+2\right)}+\frac{3}{x-1}-\frac{4}{x+1}
Combine like terms in -2x^{2}-4x-x^{2}+x+x-1.
\frac{-3x^{2}-2x-1}{\left(x-1\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and x-1 is \left(x-1\right)\left(x+2\right). Multiply \frac{3}{x-1} times \frac{x+2}{x+2}.
\frac{-3x^{2}-2x-1+3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
Since \frac{-3x^{2}-2x-1}{\left(x-1\right)\left(x+2\right)} and \frac{3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-3x^{2}-2x-1+3x+6}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
Do the multiplications in -3x^{2}-2x-1+3\left(x+2\right).
\frac{-3x^{2}+x+5}{\left(x-1\right)\left(x+2\right)}-\frac{4}{x+1}
Combine like terms in -3x^{2}-2x-1+3x+6.
\frac{\left(-3x^{2}+x+5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{4\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and x+1 is \left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{-3x^{2}+x+5}{\left(x-1\right)\left(x+2\right)} times \frac{x+1}{x+1}. Multiply \frac{4}{x+1} times \frac{\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}.
\frac{\left(-3x^{2}+x+5\right)\left(x+1\right)-4\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{\left(-3x^{2}+x+5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{4\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{3}-3x^{2}+x^{2}+x+5x+5-4x^{2}-8x+4x+8}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(-3x^{2}+x+5\right)\left(x+1\right)-4\left(x-1\right)\left(x+2\right).
\frac{-3x^{3}-6x^{2}+2x+13}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in -3x^{3}-3x^{2}+x^{2}+x+5x+5-4x^{2}-8x+4x+8.
\frac{-3x^{3}-6x^{2}+2x+13}{x^{3}+2x^{2}-x-2}
Expand \left(x-1\right)\left(x+1\right)\left(x+2\right).