Solve for v_1, v_2, v_3
v_{1} = \frac{16440}{119} = 138\frac{18}{119} \approx 138.151260504
v_{2} = \frac{18960}{119} = 159\frac{39}{119} \approx 159.327731092
v_{3} = \frac{9200}{119} = 77\frac{37}{119} \approx 77.31092437
Share
Copied to clipboard
v_{1}=50+\frac{1}{4}v_{2}+\frac{5}{8}v_{3}
Solve -\frac{2}{25}v_{1}+\frac{1}{50}v_{2}+\frac{1}{20}v_{3}=-4 for v_{1}.
-\frac{1}{50}\left(50+\frac{1}{4}v_{2}+\frac{5}{8}v_{3}\right)-\frac{9}{200}v_{2}+\frac{1}{40}v_{3}=-8 \frac{1}{20}\left(50+\frac{1}{4}v_{2}+\frac{5}{8}v_{3}\right)+\frac{1}{40}v_{2}-\frac{23}{200}v_{3}=2
Substitute 50+\frac{1}{4}v_{2}+\frac{5}{8}v_{3} for v_{1} in the second and third equation.
v_{2}=140+\frac{1}{4}v_{3} v_{3}=\frac{400}{67}+\frac{30}{67}v_{2}
Solve these equations for v_{2} and v_{3} respectively.
v_{3}=\frac{400}{67}+\frac{30}{67}\left(140+\frac{1}{4}v_{3}\right)
Substitute 140+\frac{1}{4}v_{3} for v_{2} in the equation v_{3}=\frac{400}{67}+\frac{30}{67}v_{2}.
v_{3}=\frac{9200}{119}
Solve v_{3}=\frac{400}{67}+\frac{30}{67}\left(140+\frac{1}{4}v_{3}\right) for v_{3}.
v_{2}=140+\frac{1}{4}\times \frac{9200}{119}
Substitute \frac{9200}{119} for v_{3} in the equation v_{2}=140+\frac{1}{4}v_{3}.
v_{2}=\frac{18960}{119}
Calculate v_{2} from v_{2}=140+\frac{1}{4}\times \frac{9200}{119}.
v_{1}=50+\frac{1}{4}\times \frac{18960}{119}+\frac{5}{8}\times \frac{9200}{119}
Substitute \frac{18960}{119} for v_{2} and \frac{9200}{119} for v_{3} in the equation v_{1}=50+\frac{1}{4}v_{2}+\frac{5}{8}v_{3}.
v_{1}=\frac{16440}{119}
Calculate v_{1} from v_{1}=50+\frac{1}{4}\times \frac{18960}{119}+\frac{5}{8}\times \frac{9200}{119}.
v_{1}=\frac{16440}{119} v_{2}=\frac{18960}{119} v_{3}=\frac{9200}{119}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}