Evaluate
-\frac{2y^{4}}{3}-\frac{3a^{2}}{2}+4x^{2}
Expand
-\frac{2y^{4}}{3}-\frac{3a^{2}}{2}+4x^{2}
Share
Copied to clipboard
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(-\left(-\frac{1}{3}xy^{2}\right)-\frac{1}{2}y^{4}-\left(-\frac{1}{6}xy^{2}\right)-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
The opposite of -4x^{2} is 4x^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{3}xy^{2}-\frac{1}{2}y^{4}-\left(-\frac{1}{6}xy^{2}\right)-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
The opposite of -\frac{1}{3}xy^{2} is \frac{1}{3}xy^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{3}xy^{2}-\frac{1}{2}y^{4}+\frac{1}{6}xy^{2}-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
The opposite of -\frac{1}{6}xy^{2} is \frac{1}{6}xy^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{2}xy^{2}-\frac{1}{2}y^{4}-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
Combine \frac{1}{3}xy^{2} and \frac{1}{6}xy^{2} to get \frac{1}{2}xy^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{2}xy^{2}-\frac{2}{3}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
Combine -\frac{1}{2}y^{4} and -\frac{1}{6}y^{4} to get -\frac{2}{3}y^{4}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\frac{1}{2}xy^{2}+\frac{2}{3}y^{4}-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
To find the opposite of \frac{1}{2}xy^{2}-\frac{2}{3}y^{4}, find the opposite of each term.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
Combine -\frac{4}{3}y^{4} and \frac{2}{3}y^{4} to get -\frac{2}{3}y^{4}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{\frac{1}{5}a^{2}}{-\frac{2}{5}}
Cancel out ab^{2} in both numerator and denominator.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{\frac{1}{5}a^{2}\times 5}{-2}
Divide \frac{1}{5}a^{2} by -\frac{2}{5} by multiplying \frac{1}{5}a^{2} by the reciprocal of -\frac{2}{5}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{a^{2}}{-2}
Multiply \frac{1}{5} and 5 to get 1.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-\frac{3}{2}a^{2}
Combine -a^{2} and \frac{a^{2}}{-2} to get -\frac{3}{2}a^{2}.
\frac{1}{2}xy^{2}+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-\frac{3}{2}a^{2}
Multiply -1 and -1 to get 1.
4x^{2}-\frac{2}{3}y^{4}-\frac{3}{2}a^{2}
Combine \frac{1}{2}xy^{2} and -\frac{1}{2}xy^{2} to get 0.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(-\left(-\frac{1}{3}xy^{2}\right)-\frac{1}{2}y^{4}-\left(-\frac{1}{6}xy^{2}\right)-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
The opposite of -4x^{2} is 4x^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{3}xy^{2}-\frac{1}{2}y^{4}-\left(-\frac{1}{6}xy^{2}\right)-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
The opposite of -\frac{1}{3}xy^{2} is \frac{1}{3}xy^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{3}xy^{2}-\frac{1}{2}y^{4}+\frac{1}{6}xy^{2}-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
The opposite of -\frac{1}{6}xy^{2} is \frac{1}{6}xy^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{2}xy^{2}-\frac{1}{2}y^{4}-\frac{1}{6}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
Combine \frac{1}{3}xy^{2} and \frac{1}{6}xy^{2} to get \frac{1}{2}xy^{2}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\left(\frac{1}{2}xy^{2}-\frac{2}{3}y^{4}\right)-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
Combine -\frac{1}{2}y^{4} and -\frac{1}{6}y^{4} to get -\frac{2}{3}y^{4}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{4}{3}y^{4}-\frac{1}{2}xy^{2}+\frac{2}{3}y^{4}-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
To find the opposite of \frac{1}{2}xy^{2}-\frac{2}{3}y^{4}, find the opposite of each term.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{\frac{1}{5}a^{3}b^{2}}{-\frac{2}{5}ab^{2}}
Combine -\frac{4}{3}y^{4} and \frac{2}{3}y^{4} to get -\frac{2}{3}y^{4}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{\frac{1}{5}a^{2}}{-\frac{2}{5}}
Cancel out ab^{2} in both numerator and denominator.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{\frac{1}{5}a^{2}\times 5}{-2}
Divide \frac{1}{5}a^{2} by -\frac{2}{5} by multiplying \frac{1}{5}a^{2} by the reciprocal of -\frac{2}{5}.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-a^{2}+\frac{a^{2}}{-2}
Multiply \frac{1}{5} and 5 to get 1.
-\left(-\frac{1}{2}xy^{2}\right)+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-\frac{3}{2}a^{2}
Combine -a^{2} and \frac{a^{2}}{-2} to get -\frac{3}{2}a^{2}.
\frac{1}{2}xy^{2}+4x^{2}-\frac{2}{3}y^{4}-\frac{1}{2}xy^{2}-\frac{3}{2}a^{2}
Multiply -1 and -1 to get 1.
4x^{2}-\frac{2}{3}y^{4}-\frac{3}{2}a^{2}
Combine \frac{1}{2}xy^{2} and -\frac{1}{2}xy^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}