\left. \begin{array} { l } { ( x - y ) ^ { 2 } + ( x - y ) } \\ { 14 a ( 8 + z ) ^ { 3 } + 7 a ( 8 + z ) } \end{array} \right.
Least Common Multiple
7a\left(x-y\right)\left(z+8\right)\left(x-y+1\right)\left(2z^{2}+32z+129\right)
Evaluate
\left(x-y\right)\left(x-y+1\right),\ 7a\left(z+8\right)\left(2\left(z+8\right)^{2}+1\right)
Share
Copied to clipboard
7a\left(8+z\right)\left(2\left(8+z\right)^{2}+1\right)=7a\left(z+8\right)\left(2z^{2}+32z+129\right)
Factor the expressions that are not already factored.
7a\left(x-y\right)\left(z+8\right)\left(x-y+1\right)\left(2z^{2}+32z+129\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
14ax^{2}z^{3}+336ax^{2}z^{2}+7224ax^{2}-28axyz^{3}-672axyz^{2}-5390axyz-14448axy+14axz^{3}+336axz^{2}+2695axz+7224ax+14ay^{2}z^{3}+336ay^{2}z^{2}+7224ay^{2}-14ayz^{3}-336ayz^{2}-2695ayz-7224ay+2695azx^{2}+2695azy^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}