\left. \begin{array} { l } { ( x + 3 ) ( x ^ { 2 } + 9 ) ( x - 3 ) } \\ { ( 8 m + 6 n ) ( 8 m - 6 n ) } \end{array} \right.
Least Common Multiple
-4\left(16m^{2}-9n^{2}\right)\left(x^{4}-81\right)
Evaluate
x^{4}-81,\ 64m^{2}-36n^{2}
Share
Copied to clipboard
x^{4}-81=\left(x-3\right)\left(x+3\right)\left(x^{2}+9\right) 64m^{2}-36n^{2}=4\left(4m-3n\right)\left(4m+3n\right)
Factor the expressions that are not already factored.
4\left(x-3\right)\left(x+3\right)\left(4m-3n\right)\left(3n+4m\right)\left(-x^{2}-9\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
36n^{2}x^{4}-64m^{2}x^{4}-2916n^{2}+5184m^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}