\left. \begin{array} { l } { ( x + 3 ) ( x + 5 ) ( x - 5 ) ( x - 3 ) } \\ { ( a + b ) ^ { 2 } ( a - b ) ^ { 2 } ( a ^ { 4 } + a ^ { 2 } b ^ { 2 } + b ^ { 4 } ) ^ { 2 } } \end{array} \right.
Least Common Multiple
\left(x^{2}-25\right)\left(x^{2}-9\right)\left(\left(a^{2}-b^{2}\right)\left(-\left(ab\right)^{2}+\left(a^{2}+b^{2}\right)^{2}\right)\right)^{2}
Evaluate
x^{4}-34x^{2}+225,\ \left(a^{6}-b^{6}\right)^{2}
Share
Copied to clipboard
-34x^{2}+x^{4}+225=\left(x-5\right)\left(x-3\right)\left(x+3\right)\left(x+5\right)
Factor the expressions that are not already factored.
\left(x-5\right)\left(x-3\right)\left(x+3\right)\left(x+5\right)\left(a^{2}-b^{2}\right)^{2}\left(a^{2}b^{2}+a^{4}+b^{4}\right)^{2}
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
x^{4}a^{12}+x^{4}b^{12}-2x^{4}a^{6}b^{6}+68x^{2}a^{6}b^{6}-34x^{2}a^{12}-34x^{2}b^{12}-450a^{6}b^{6}+225a^{12}+225b^{12}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}