Solve for x, z
x=4
z=-1
Share
Copied to clipboard
x^{2}+2x-3-\left(x+2\right)\left(x-3\right)=15
Consider the first equation. Use the distributive property to multiply x+3 by x-1 and combine like terms.
x^{2}+2x-3-\left(x^{2}-x-6\right)=15
Use the distributive property to multiply x+2 by x-3 and combine like terms.
x^{2}+2x-3-x^{2}+x+6=15
To find the opposite of x^{2}-x-6, find the opposite of each term.
2x-3+x+6=15
Combine x^{2} and -x^{2} to get 0.
3x-3+6=15
Combine 2x and x to get 3x.
3x+3=15
Add -3 and 6 to get 3.
3x=15-3
Subtract 3 from both sides.
3x=12
Subtract 3 from 15 to get 12.
x=\frac{12}{3}
Divide both sides by 3.
x=4
Divide 12 by 3 to get 4.
6z^{2}-13z-15-\left(2z-1\right)\left(3z+2\right)=1
Consider the second equation. Use the distributive property to multiply 6z+5 by z-3 and combine like terms.
6z^{2}-13z-15-\left(6z^{2}+z-2\right)=1
Use the distributive property to multiply 2z-1 by 3z+2 and combine like terms.
6z^{2}-13z-15-6z^{2}-z+2=1
To find the opposite of 6z^{2}+z-2, find the opposite of each term.
-13z-15-z+2=1
Combine 6z^{2} and -6z^{2} to get 0.
-14z-15+2=1
Combine -13z and -z to get -14z.
-14z-13=1
Add -15 and 2 to get -13.
-14z=1+13
Add 13 to both sides.
-14z=14
Add 1 and 13 to get 14.
z=\frac{14}{-14}
Divide both sides by -14.
z=-1
Divide 14 by -14 to get -1.
x=4 z=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}