Skip to main content
Solve for a, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

60a-700=20x+260
Consider the first equation. Use the distributive property to multiply a-\frac{35}{3} by 60.
60a-700-20x=260
Subtract 20x from both sides.
60a-20x=260+700
Add 700 to both sides.
60a-20x=960
Add 260 and 700 to get 960.
12a+180=20x+180
Consider the second equation. Use the distributive property to multiply a+15 by 12.
12a+180-20x=180
Subtract 20x from both sides.
12a-20x=180-180
Subtract 180 from both sides.
12a-20x=0
Subtract 180 from 180 to get 0.
60a-20x=960,12a-20x=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
60a-20x=960
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
60a=20x+960
Add 20x to both sides of the equation.
a=\frac{1}{60}\left(20x+960\right)
Divide both sides by 60.
a=\frac{1}{3}x+16
Multiply \frac{1}{60} times 960+20x.
12\left(\frac{1}{3}x+16\right)-20x=0
Substitute \frac{x}{3}+16 for a in the other equation, 12a-20x=0.
4x+192-20x=0
Multiply 12 times \frac{x}{3}+16.
-16x+192=0
Add 4x to -20x.
-16x=-192
Subtract 192 from both sides of the equation.
x=12
Divide both sides by -16.
a=\frac{1}{3}\times 12+16
Substitute 12 for x in a=\frac{1}{3}x+16. Because the resulting equation contains only one variable, you can solve for a directly.
a=4+16
Multiply \frac{1}{3} times 12.
a=20
Add 16 to 4.
a=20,x=12
The system is now solved.
60a-700=20x+260
Consider the first equation. Use the distributive property to multiply a-\frac{35}{3} by 60.
60a-700-20x=260
Subtract 20x from both sides.
60a-20x=260+700
Add 700 to both sides.
60a-20x=960
Add 260 and 700 to get 960.
12a+180=20x+180
Consider the second equation. Use the distributive property to multiply a+15 by 12.
12a+180-20x=180
Subtract 20x from both sides.
12a-20x=180-180
Subtract 180 from both sides.
12a-20x=0
Subtract 180 from 180 to get 0.
60a-20x=960,12a-20x=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}60&-20\\12&-20\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}960\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}60&-20\\12&-20\end{matrix}\right))\left(\begin{matrix}60&-20\\12&-20\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}60&-20\\12&-20\end{matrix}\right))\left(\begin{matrix}960\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}60&-20\\12&-20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}60&-20\\12&-20\end{matrix}\right))\left(\begin{matrix}960\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}60&-20\\12&-20\end{matrix}\right))\left(\begin{matrix}960\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{60\left(-20\right)-\left(-20\times 12\right)}&-\frac{-20}{60\left(-20\right)-\left(-20\times 12\right)}\\-\frac{12}{60\left(-20\right)-\left(-20\times 12\right)}&\frac{60}{60\left(-20\right)-\left(-20\times 12\right)}\end{matrix}\right)\left(\begin{matrix}960\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{48}&-\frac{1}{48}\\\frac{1}{80}&-\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}960\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{48}\times 960\\\frac{1}{80}\times 960\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}20\\12\end{matrix}\right)
Do the arithmetic.
a=20,x=12
Extract the matrix elements a and x.
60a-700=20x+260
Consider the first equation. Use the distributive property to multiply a-\frac{35}{3} by 60.
60a-700-20x=260
Subtract 20x from both sides.
60a-20x=260+700
Add 700 to both sides.
60a-20x=960
Add 260 and 700 to get 960.
12a+180=20x+180
Consider the second equation. Use the distributive property to multiply a+15 by 12.
12a+180-20x=180
Subtract 20x from both sides.
12a-20x=180-180
Subtract 180 from both sides.
12a-20x=0
Subtract 180 from 180 to get 0.
60a-20x=960,12a-20x=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60a-12a-20x+20x=960
Subtract 12a-20x=0 from 60a-20x=960 by subtracting like terms on each side of the equal sign.
60a-12a=960
Add -20x to 20x. Terms -20x and 20x cancel out, leaving an equation with only one variable that can be solved.
48a=960
Add 60a to -12a.
a=20
Divide both sides by 48.
12\times 20-20x=0
Substitute 20 for a in 12a-20x=0. Because the resulting equation contains only one variable, you can solve for x directly.
240-20x=0
Multiply 12 times 20.
-20x=-240
Subtract 240 from both sides of the equation.
x=12
Divide both sides by -20.
a=20,x=12
The system is now solved.