Skip to main content
Sort
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(a^{m}+a^{n}\right)\left(a^{m}-a^{n}\right)-2a^{n}\left(a^{m}+a^{n}\right),0^{2})
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{m}+a^{n}\right)^{2}.
sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(\left(a^{m}\right)^{2}-\left(a^{n}\right)^{2}\right)-2a^{n}\left(a^{m}+a^{n}\right),0^{2})
Consider \left(a^{m}+a^{n}\right)\left(a^{m}-a^{n}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(\left(a^{m}\right)^{2}-\left(a^{n}\right)^{2}\right)-2a^{n}\left(a^{m}+a^{n}\right),0)
Calculate 0 to the power of 2 and get 0.
sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(a^{m}\right)^{2}+\left(a^{n}\right)^{2}-2a^{n}\left(a^{m}+a^{n}\right),0)
To find the opposite of \left(a^{m}\right)^{2}-\left(a^{n}\right)^{2}, find the opposite of each term.
sort(2a^{m}a^{n}+\left(a^{n}\right)^{2}+\left(a^{n}\right)^{2}-2a^{n}\left(a^{m}+a^{n}\right),0)
Combine \left(a^{m}\right)^{2} and -\left(a^{m}\right)^{2} to get 0.
sort(2a^{m}a^{n}+2\left(a^{n}\right)^{2}-2a^{n}\left(a^{m}+a^{n}\right),0)
Combine \left(a^{n}\right)^{2} and \left(a^{n}\right)^{2} to get 2\left(a^{n}\right)^{2}.
sort(2a^{m}a^{n}+2\left(a^{n}\right)^{2}-2a^{n}a^{m}-2\left(a^{n}\right)^{2},0)
Use the distributive property to multiply -2a^{n} by a^{m}+a^{n}.
sort(2\left(a^{n}\right)^{2}-2\left(a^{n}\right)^{2},0)
Combine 2a^{m}a^{n} and -2a^{n}a^{m} to get 0.
sort(0,0)
Combine 2\left(a^{n}\right)^{2} and -2\left(a^{n}\right)^{2} to get 0.
0,0
The list values are already in order.