\left. \begin{array} { l } { ( a ^ { m } + a ^ { n } ) ^ { 2 } - ( a ^ { m } + a ^ { n } ) ( a ^ { m } - a ^ { n } ) - 2 a ^ { n } ( a ^ { m } + a ^ { n } ) } \\ { 0 ^ { 2 } } \end{array} \right.
Sort
0,\ 0
Evaluate
0,\ 0
Share
Copied to clipboard
sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(a^{m}+a^{n}\right)\left(a^{m}-a^{n}\right)-2a^{n}\left(a^{m}+a^{n}\right),0^{2})
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{m}+a^{n}\right)^{2}.
sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(\left(a^{m}\right)^{2}-\left(a^{n}\right)^{2}\right)-2a^{n}\left(a^{m}+a^{n}\right),0^{2})
Consider \left(a^{m}+a^{n}\right)\left(a^{m}-a^{n}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(\left(a^{m}\right)^{2}-\left(a^{n}\right)^{2}\right)-2a^{n}\left(a^{m}+a^{n}\right),0)
Calculate 0 to the power of 2 and get 0.
sort(\left(a^{m}\right)^{2}+2a^{m}a^{n}+\left(a^{n}\right)^{2}-\left(a^{m}\right)^{2}+\left(a^{n}\right)^{2}-2a^{n}\left(a^{m}+a^{n}\right),0)
To find the opposite of \left(a^{m}\right)^{2}-\left(a^{n}\right)^{2}, find the opposite of each term.
sort(2a^{m}a^{n}+\left(a^{n}\right)^{2}+\left(a^{n}\right)^{2}-2a^{n}\left(a^{m}+a^{n}\right),0)
Combine \left(a^{m}\right)^{2} and -\left(a^{m}\right)^{2} to get 0.
sort(2a^{m}a^{n}+2\left(a^{n}\right)^{2}-2a^{n}\left(a^{m}+a^{n}\right),0)
Combine \left(a^{n}\right)^{2} and \left(a^{n}\right)^{2} to get 2\left(a^{n}\right)^{2}.
sort(2a^{m}a^{n}+2\left(a^{n}\right)^{2}-2a^{n}a^{m}-2\left(a^{n}\right)^{2},0)
Use the distributive property to multiply -2a^{n} by a^{m}+a^{n}.
sort(2\left(a^{n}\right)^{2}-2\left(a^{n}\right)^{2},0)
Combine 2a^{m}a^{n} and -2a^{n}a^{m} to get 0.
sort(0,0)
Combine 2\left(a^{n}\right)^{2} and -2\left(a^{n}\right)^{2} to get 0.
0,0
The list values are already in order.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}