Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(a-b\right)y+a\left(a+b\right)=0,\left(a+b\right)y+\left(a-b\right)x=2b
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(a-b\right)y+a\left(a+b\right)=0
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
\left(a-b\right)y=-a\left(a+b\right)
Subtract \left(a+b\right)a from both sides of the equation.
y=-\frac{a\left(a+b\right)}{a-b}
Divide both sides by a-b.
\left(a+b\right)\left(-\frac{a\left(a+b\right)}{a-b}\right)+\left(a-b\right)x=2b
Substitute -\frac{\left(a+b\right)a}{a-b} for y in the other equation, \left(a+b\right)y+\left(a-b\right)x=2b.
-\frac{a\left(a+b\right)^{2}}{a-b}+\left(a-b\right)x=2b
Multiply a+b times -\frac{\left(a+b\right)a}{a-b}.
\left(a-b\right)x=\frac{a^{3}+ab^{2}+2ab-2b^{2}+2ba^{2}}{a-b}
Add \frac{a\left(a+b\right)^{2}}{a-b} to both sides of the equation.
x=\frac{a^{3}+ab^{2}+2ab-2b^{2}+2ba^{2}}{\left(a-b\right)^{2}}
Divide both sides by a-b.
y=-\frac{a\left(a+b\right)}{a-b},x=\frac{a^{3}+ab^{2}+2ab-2b^{2}+2ba^{2}}{\left(a-b\right)^{2}}
The system is now solved.