Solve for a
a=1
Share
Copied to clipboard
a\left(-\frac{3}{4}\right)+3\left(-\frac{3}{4}\right)=\left(a-2\right)\times 3
Use the distributive property to multiply a+3 by -\frac{3}{4}.
a\left(-\frac{3}{4}\right)+\frac{3\left(-3\right)}{4}=\left(a-2\right)\times 3
Express 3\left(-\frac{3}{4}\right) as a single fraction.
a\left(-\frac{3}{4}\right)+\frac{-9}{4}=\left(a-2\right)\times 3
Multiply 3 and -3 to get -9.
a\left(-\frac{3}{4}\right)-\frac{9}{4}=\left(a-2\right)\times 3
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
a\left(-\frac{3}{4}\right)-\frac{9}{4}=3a-6
Use the distributive property to multiply a-2 by 3.
a\left(-\frac{3}{4}\right)-\frac{9}{4}-3a=-6
Subtract 3a from both sides.
-\frac{15}{4}a-\frac{9}{4}=-6
Combine a\left(-\frac{3}{4}\right) and -3a to get -\frac{15}{4}a.
-\frac{15}{4}a=-6+\frac{9}{4}
Add \frac{9}{4} to both sides.
-\frac{15}{4}a=-\frac{24}{4}+\frac{9}{4}
Convert -6 to fraction -\frac{24}{4}.
-\frac{15}{4}a=\frac{-24+9}{4}
Since -\frac{24}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
-\frac{15}{4}a=-\frac{15}{4}
Add -24 and 9 to get -15.
a=-\frac{15}{4}\left(-\frac{4}{15}\right)
Multiply both sides by -\frac{4}{15}, the reciprocal of -\frac{15}{4}.
a=\frac{-15\left(-4\right)}{4\times 15}
Multiply -\frac{15}{4} times -\frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
a=\frac{60}{60}
Do the multiplications in the fraction \frac{-15\left(-4\right)}{4\times 15}.
a=1
Divide 60 by 60 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}