Skip to main content
Evaluate
Tick mark Image

Share

\left(7+4\sqrt{3}\right)\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
\left(7+4\sqrt{3}\right)\left(4-4\sqrt{3}+3\right)+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
The square of \sqrt{3} is 3.
\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
Add 4 and 3 to get 7.
49-\left(4\sqrt{3}\right)^{2}+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
49-4^{2}\left(\sqrt{3}\right)^{2}+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
Expand \left(4\sqrt{3}\right)^{2}.
49-16\left(\sqrt{3}\right)^{2}+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
Calculate 4 to the power of 2 and get 16.
49-16\times 3+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
The square of \sqrt{3} is 3.
49-48+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
Multiply 16 and 3 to get 48.
1+\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+\sqrt{3}
Subtract 48 from 49 to get 1.
1+4-\left(\sqrt{3}\right)^{2}+\sqrt{3}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
1+4-3+\sqrt{3}
The square of \sqrt{3} is 3.
1+1+\sqrt{3}
Subtract 3 from 4 to get 1.
2+\sqrt{3}
Add 1 and 1 to get 2.