Solve for x
x = \frac{133}{50} = 2\frac{33}{50} = 2.66
Graph
Share
Copied to clipboard
\frac{5\times 3+2}{3}-\frac{4\times 2+1}{2}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{15+2}{3}-\frac{4\times 2+1}{2}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Multiply 5 and 3 to get 15.
\frac{17}{3}-\frac{4\times 2+1}{2}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Add 15 and 2 to get 17.
\frac{17}{3}-\frac{8+1}{2}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Multiply 4 and 2 to get 8.
\frac{17}{3}-\frac{9}{2}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Add 8 and 1 to get 9.
\frac{34}{6}-\frac{27}{6}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{17}{3} and \frac{9}{2} to fractions with denominator 6.
\frac{34-27}{6}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Since \frac{34}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{6}=\frac{4}{19}x\left(\frac{8\times 4+3}{4}-\frac{6\times 3+2}{3}\right)
Subtract 27 from 34 to get 7.
\frac{7}{6}=\frac{4}{19}x\left(\frac{32+3}{4}-\frac{6\times 3+2}{3}\right)
Multiply 8 and 4 to get 32.
\frac{7}{6}=\frac{4}{19}x\left(\frac{35}{4}-\frac{6\times 3+2}{3}\right)
Add 32 and 3 to get 35.
\frac{7}{6}=\frac{4}{19}x\left(\frac{35}{4}-\frac{18+2}{3}\right)
Multiply 6 and 3 to get 18.
\frac{7}{6}=\frac{4}{19}x\left(\frac{35}{4}-\frac{20}{3}\right)
Add 18 and 2 to get 20.
\frac{7}{6}=\frac{4}{19}x\left(\frac{105}{12}-\frac{80}{12}\right)
Least common multiple of 4 and 3 is 12. Convert \frac{35}{4} and \frac{20}{3} to fractions with denominator 12.
\frac{7}{6}=\frac{4}{19}x\times \frac{105-80}{12}
Since \frac{105}{12} and \frac{80}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{6}=\frac{4}{19}x\times \frac{25}{12}
Subtract 80 from 105 to get 25.
\frac{7}{6}=\frac{4\times 25}{19\times 12}x
Multiply \frac{4}{19} times \frac{25}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{6}=\frac{100}{228}x
Do the multiplications in the fraction \frac{4\times 25}{19\times 12}.
\frac{7}{6}=\frac{25}{57}x
Reduce the fraction \frac{100}{228} to lowest terms by extracting and canceling out 4.
\frac{25}{57}x=\frac{7}{6}
Swap sides so that all variable terms are on the left hand side.
x=\frac{7}{6}\times \frac{57}{25}
Multiply both sides by \frac{57}{25}, the reciprocal of \frac{25}{57}.
x=\frac{7\times 57}{6\times 25}
Multiply \frac{7}{6} times \frac{57}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{399}{150}
Do the multiplications in the fraction \frac{7\times 57}{6\times 25}.
x=\frac{133}{50}
Reduce the fraction \frac{399}{150} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}