Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+9x+2+2x-3
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}+11x+2-3
Combine 9x and 2x to get 11x.
2x^{2}+11x-1
Subtract 3 from 2 to get -1.
factor(2x^{2}+9x+2+2x-3)
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
factor(2x^{2}+11x+2-3)
Combine 9x and 2x to get 11x.
factor(2x^{2}+11x-1)
Subtract 3 from 2 to get -1.
2x^{2}+11x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 2\left(-1\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{121-4\times 2\left(-1\right)}}{2\times 2}
Square 11.
x=\frac{-11±\sqrt{121-8\left(-1\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-11±\sqrt{121+8}}{2\times 2}
Multiply -8 times -1.
x=\frac{-11±\sqrt{129}}{2\times 2}
Add 121 to 8.
x=\frac{-11±\sqrt{129}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{129}-11}{4}
Now solve the equation x=\frac{-11±\sqrt{129}}{4} when ± is plus. Add -11 to \sqrt{129}.
x=\frac{-\sqrt{129}-11}{4}
Now solve the equation x=\frac{-11±\sqrt{129}}{4} when ± is minus. Subtract \sqrt{129} from -11.
2x^{2}+11x-1=2\left(x-\frac{\sqrt{129}-11}{4}\right)\left(x-\frac{-\sqrt{129}-11}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11+\sqrt{129}}{4} for x_{1} and \frac{-11-\sqrt{129}}{4} for x_{2}.