\left. \begin{array} { l } { ( 4 a ^ { 3 } + 5 ) ^ { 2 } + ( 4 a ^ { 3 } - 1 ) ^ { 2 } - 2 ( 4 a ^ { 3 } + 5 ) ( 4 a ^ { 3 } - 1 ) } \\ { ( p - 2 a ) ( p + 2 a ) - ( p - a ) ( p ^ { 2 } + p a + a ^ { 2 } ) } \\ { x ( 2 x - 1 ) ^ { 2 } - 2 ( x + 1 ) ( x ^ { 2 } - x + 1 ) } \end{array} \right.
Least Common Multiple
36\left(x-2\right)\left(2x^{2}+1\right)\left(p^{3}-a^{3}+4a^{2}-p^{2}\right)
Evaluate
36,\ a^{3}-p^{3}+p^{2}-4a^{2},\ \left(x-2\right)\left(2x^{2}+1\right)
Share
Copied to clipboard
36=2^{2}\times 3^{2} -2-4x^{2}+x+2x^{3}=\left(x-2\right)\left(2x^{2}+1\right)
Factor the expressions that are not already factored.
36\left(x-2\right)\left(2x^{2}+1\right)\left(p^{3}-a^{3}+4a^{2}-p^{2}\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
72p^{3}x^{3}-72a^{3}x^{3}+288a^{2}x^{3}-72p^{2}x^{3}+144x^{2}a^{3}-144x^{2}p^{3}+144p^{2}x^{2}-576a^{2}x^{2}+36xp^{3}-36xa^{3}+144xa^{2}-36xp^{2}-72p^{3}+72a^{3}-288a^{2}+72p^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}