\left. \begin{array} { l } { ( 4 - x ^ { 3 } ) ( 16 + 4 x ^ { 3 } + x ^ { 3 } ) } \\ { ( 4 - x ^ { 3 } ) ( 16 + 4 x ^ { 3 } + x ^ { 6 } ) } \\ { ( 4 - x ^ { 5 } ) ( 16 + 4 x ^ { 5 } + x ^ { 5 } ) } \\ { ( 4 - x ^ { 5 } ) ( 16 + 4 x ^ { 5 } + x ^ { 10 } ) } \end{array} \right.
Least Common Multiple
lcm(64+4x^{3}-5x^{6},64-x^{9},64+4x^{5}-5x^{10},64-x^{15})
Evaluate
64+4x^{3}-5x^{6},\ 64-x^{9},\ 64+4x^{5}-5x^{10},\ 64-x^{15}
Graph
Share
Copied to clipboard
64+4x^{3}-5x^{6}=\left(-x^{3}+4\right)\left(5x^{3}+16\right) 64-x^{9}=\left(x^{3}-4\right)\left(-x^{6}-4x^{3}-16\right) 64+4x^{5}-5x^{10}=\left(-x^{5}+4\right)\left(5x^{5}+16\right) 64-x^{15}=\left(x^{5}-4\right)\left(-x^{10}-4x^{5}-16\right)
Factor the expressions that are not already factored.
25x^{37}+80x^{34}-20x^{32}-64x^{29}-1600x^{28}-320x^{27}-5120x^{25}-1024x^{24}+1280x^{23}-1600x^{22}+4096x^{20}-5120x^{19}+20480x^{18}+1280x^{17}+65536x^{15}+4096x^{14}+102400x^{13}+20480x^{12}+327680x^{10}+65536x^{9}-81920x^{8}-262144x^{5}-1310720x^{3}-4194304
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}