\left. \begin{array} { l } { ( 4 - 4 ) ( 4 + 4 ) \times 2 = 8 - 4 ( 110 - 4 ) } \\ { ( 4 ^ { 2 } - 16 ) = 8 - 40 + 44 } \end{array} \right.
Verify
false
Share
Copied to clipboard
0\left(4+4\right)\times 2=8-4\left(110-4\right)\text{ and }4^{2}-16=8-40+44
Subtract 4 from 4 to get 0.
0\times 8\times 2=8-4\left(110-4\right)\text{ and }4^{2}-16=8-40+44
Add 4 and 4 to get 8.
0\times 2=8-4\left(110-4\right)\text{ and }4^{2}-16=8-40+44
Multiply 0 and 8 to get 0.
0=8-4\left(110-4\right)\text{ and }4^{2}-16=8-40+44
Multiply 0 and 2 to get 0.
0=8-4\times 106\text{ and }4^{2}-16=8-40+44
Subtract 4 from 110 to get 106.
0=8-424\text{ and }4^{2}-16=8-40+44
Multiply 4 and 106 to get 424.
0=-416\text{ and }4^{2}-16=8-40+44
Subtract 424 from 8 to get -416.
\text{false}\text{ and }4^{2}-16=8-40+44
Compare 0 and -416.
\text{false}\text{ and }16-16=8-40+44
Calculate 4 to the power of 2 and get 16.
\text{false}\text{ and }0=8-40+44
Subtract 16 from 16 to get 0.
\text{false}\text{ and }0=-32+44
Subtract 40 from 8 to get -32.
\text{false}\text{ and }0=12
Add -32 and 44 to get 12.
\text{false}\text{ and }\text{false}
Compare 0 and 12.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}