Skip to main content
Solve for z, x
Tick mark Image

Similar Problems from Web Search

Share

64-144z+108z^{2}-27z^{3}+z\left(14+27z^{2}\right)=108z^{2}+77
Consider the first equation. Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(4-3z\right)^{3}.
64-144z+108z^{2}-27z^{3}+14z+27z^{3}=108z^{2}+77
Use the distributive property to multiply z by 14+27z^{2}.
64-130z+108z^{2}-27z^{3}+27z^{3}=108z^{2}+77
Combine -144z and 14z to get -130z.
64-130z+108z^{2}=108z^{2}+77
Combine -27z^{3} and 27z^{3} to get 0.
64-130z+108z^{2}-108z^{2}=77
Subtract 108z^{2} from both sides.
64-130z=77
Combine 108z^{2} and -108z^{2} to get 0.
-130z=77-64
Subtract 64 from both sides.
-130z=13
Subtract 64 from 77 to get 13.
z=\frac{13}{-130}
Divide both sides by -130.
z=-\frac{1}{10}
Reduce the fraction \frac{13}{-130} to lowest terms by extracting and canceling out 13.
125x^{3}+150x^{2}+60x+8-25x\left(5x^{2}-4\right)=150x^{2}+21
Consider the second equation. Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(5x+2\right)^{3}.
125x^{3}+150x^{2}+60x+8-25x\left(5x^{2}-4\right)-150x^{2}=21
Subtract 150x^{2} from both sides.
125x^{3}+150x^{2}+60x+8-125x^{3}+100x-150x^{2}=21
Use the distributive property to multiply -25x by 5x^{2}-4.
150x^{2}+60x+8+100x-150x^{2}=21
Combine 125x^{3} and -125x^{3} to get 0.
150x^{2}+160x+8-150x^{2}=21
Combine 60x and 100x to get 160x.
160x+8=21
Combine 150x^{2} and -150x^{2} to get 0.
160x=21-8
Subtract 8 from both sides.
160x=13
Subtract 8 from 21 to get 13.
x=\frac{13}{160}
Divide both sides by 160.
z=-\frac{1}{10} x=\frac{13}{160}
The system is now solved.