Solve for z, x
x=\frac{13}{160}=0.08125
z=-\frac{1}{10}=-0.1
Share
Copied to clipboard
64-144z+108z^{2}-27z^{3}+z\left(14+27z^{2}\right)=108z^{2}+77
Consider the first equation. Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(4-3z\right)^{3}.
64-144z+108z^{2}-27z^{3}+14z+27z^{3}=108z^{2}+77
Use the distributive property to multiply z by 14+27z^{2}.
64-130z+108z^{2}-27z^{3}+27z^{3}=108z^{2}+77
Combine -144z and 14z to get -130z.
64-130z+108z^{2}=108z^{2}+77
Combine -27z^{3} and 27z^{3} to get 0.
64-130z+108z^{2}-108z^{2}=77
Subtract 108z^{2} from both sides.
64-130z=77
Combine 108z^{2} and -108z^{2} to get 0.
-130z=77-64
Subtract 64 from both sides.
-130z=13
Subtract 64 from 77 to get 13.
z=\frac{13}{-130}
Divide both sides by -130.
z=-\frac{1}{10}
Reduce the fraction \frac{13}{-130} to lowest terms by extracting and canceling out 13.
125x^{3}+150x^{2}+60x+8-25x\left(5x^{2}-4\right)=150x^{2}+21
Consider the second equation. Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(5x+2\right)^{3}.
125x^{3}+150x^{2}+60x+8-25x\left(5x^{2}-4\right)-150x^{2}=21
Subtract 150x^{2} from both sides.
125x^{3}+150x^{2}+60x+8-125x^{3}+100x-150x^{2}=21
Use the distributive property to multiply -25x by 5x^{2}-4.
150x^{2}+60x+8+100x-150x^{2}=21
Combine 125x^{3} and -125x^{3} to get 0.
150x^{2}+160x+8-150x^{2}=21
Combine 60x and 100x to get 160x.
160x+8=21
Combine 150x^{2} and -150x^{2} to get 0.
160x=21-8
Subtract 8 from both sides.
160x=13
Subtract 8 from 21 to get 13.
x=\frac{13}{160}
Divide both sides by 160.
z=-\frac{1}{10} x=\frac{13}{160}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}