Skip to main content
Sort
Tick mark Image
Evaluate
Tick mark Image

Share

sort(16-\left(\sqrt{3}\right)^{2},\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Consider \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
sort(16-3,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
The square of \sqrt{3} is 3.
sort(13,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Subtract 3 from 16 to get 13.
sort(13,1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{20})
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{5}\right)^{2}.
sort(13,1+2\sqrt{5}+5-\sqrt{20})
The square of \sqrt{5} is 5.
sort(13,6+2\sqrt{5}-\sqrt{20})
Add 1 and 5 to get 6.
sort(13,6+2\sqrt{5}-2\sqrt{5})
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
sort(13,6)
Combine 2\sqrt{5} and -2\sqrt{5} to get 0.
13
To sort the list, start from a single element 13.
6,13
Insert 6 to the appropriate location in the new list.