\left. \begin{array} { l } { ( 4 - \sqrt { 3 } ) ( 4 + \sqrt { 3 } ) } \\ { ( 1 + \sqrt { 5 } ) ^ { 2 } - \sqrt { 20 } } \end{array} \right.
Sort
6,13
Evaluate
13,\ 6
Share
Copied to clipboard
sort(16-\left(\sqrt{3}\right)^{2},\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Consider \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
sort(16-3,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
The square of \sqrt{3} is 3.
sort(13,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Subtract 3 from 16 to get 13.
sort(13,1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{20})
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{5}\right)^{2}.
sort(13,1+2\sqrt{5}+5-\sqrt{20})
The square of \sqrt{5} is 5.
sort(13,6+2\sqrt{5}-\sqrt{20})
Add 1 and 5 to get 6.
sort(13,6+2\sqrt{5}-2\sqrt{5})
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
sort(13,6)
Combine 2\sqrt{5} and -2\sqrt{5} to get 0.
13
To sort the list, start from a single element 13.
6,13
Insert 6 to the appropriate location in the new list.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}